Swaminathan Narayanaswamy, Sangyoung Park, S. Steinhorst, S. Chakraborty
{"title":"Multi-Pattern Active Cell Balancing Architecture and Equalization Strategy for Battery Packs","authors":"Swaminathan Narayanaswamy, Sangyoung Park, S. Steinhorst, S. Chakraborty","doi":"10.1145/3218603.3218607","DOIUrl":null,"url":null,"abstract":"Active cell balancing is the process of improving the usable capacity of a series-connected Lithium-Ion (Li-Ion) battery pack by redistributing the charge levels of individual cells. Depending upon the State-of-Charge (SoC) distribution of the individual cells in the pack, an appropriate charge transfer pattern (cell-to-cell, cell-to-module, module-to-cell or module-to-module) has to be selected for improving the usable energy of the battery pack. However, existing active cell balancing circuits are only capable of performing limited number of charge transfer patterns and, therefore, have a reduced energy efficiency for different types of SoC distribution. In this paper, we propose a modular, multi-pattern active cell balancing architecture that is capable of performing multiple types of charge transfer patterns (cell-to-cell, cell-to-module, module-to-cell and module-to-module) with a reduced number of hardware components and control signals compared to existing solutions. We derive a closed-form, analytical model of our proposed balancing architecture with which we profile the efficiency of the individual charge transfer patterns enabled by our architecture. Using the profiling analysis, we propose a hybrid charge equalization strategy that automatically selects the most energy-efficient charge transfer pattern depending upon the SoC distribution of the battery pack and the characteristics of our proposed balancing architecture. Case studies show that our proposed balancing architecture and hybrid charge equalization strategy provide up to a maximum of 46.83% improvement in energy efficiency compared to existing solutions.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Active cell balancing is the process of improving the usable capacity of a series-connected Lithium-Ion (Li-Ion) battery pack by redistributing the charge levels of individual cells. Depending upon the State-of-Charge (SoC) distribution of the individual cells in the pack, an appropriate charge transfer pattern (cell-to-cell, cell-to-module, module-to-cell or module-to-module) has to be selected for improving the usable energy of the battery pack. However, existing active cell balancing circuits are only capable of performing limited number of charge transfer patterns and, therefore, have a reduced energy efficiency for different types of SoC distribution. In this paper, we propose a modular, multi-pattern active cell balancing architecture that is capable of performing multiple types of charge transfer patterns (cell-to-cell, cell-to-module, module-to-cell and module-to-module) with a reduced number of hardware components and control signals compared to existing solutions. We derive a closed-form, analytical model of our proposed balancing architecture with which we profile the efficiency of the individual charge transfer patterns enabled by our architecture. Using the profiling analysis, we propose a hybrid charge equalization strategy that automatically selects the most energy-efficient charge transfer pattern depending upon the SoC distribution of the battery pack and the characteristics of our proposed balancing architecture. Case studies show that our proposed balancing architecture and hybrid charge equalization strategy provide up to a maximum of 46.83% improvement in energy efficiency compared to existing solutions.