AI-based algorithms for protein surface comparisons

Steven J Pickering , Andrew J Bulpitt , Nick Efford , Nicola D Gold , David R Westhead
{"title":"AI-based algorithms for protein surface comparisons","authors":"Steven J Pickering ,&nbsp;Andrew J Bulpitt ,&nbsp;Nick Efford ,&nbsp;Nicola D Gold ,&nbsp;David R Westhead","doi":"10.1016/S0097-8485(01)00102-4","DOIUrl":null,"url":null,"abstract":"<div><p>Many current methods for protein analysis depend on the detection of similarity in either the primary sequence, or the overall tertiary structure (the C<sub>α</sub> atoms of the protein backbone). These common sequences or structures may imply similar functional characteristics or active properties. Active sites and ligand binding sites usually occur on or near the surface of the protein; so similarly shaped surface regions could imply similar functions. We investigate various methods for describing the shape properties of protein surfaces and for comparing them. Our current work uses algorithms from computer vision to describe the protein surfaces, and methods from graph theory to compare the surface regions. Early results indicate that we can successfully match a family of related ligand binding sites, and find their similarly shaped surface regions. This method of surface analysis could be extended to help identify unknown surface regions for possible ligand binding or active sites.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 1","pages":"Pages 79-84"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00102-4","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Many current methods for protein analysis depend on the detection of similarity in either the primary sequence, or the overall tertiary structure (the Cα atoms of the protein backbone). These common sequences or structures may imply similar functional characteristics or active properties. Active sites and ligand binding sites usually occur on or near the surface of the protein; so similarly shaped surface regions could imply similar functions. We investigate various methods for describing the shape properties of protein surfaces and for comparing them. Our current work uses algorithms from computer vision to describe the protein surfaces, and methods from graph theory to compare the surface regions. Early results indicate that we can successfully match a family of related ligand binding sites, and find their similarly shaped surface regions. This method of surface analysis could be extended to help identify unknown surface regions for possible ligand binding or active sites.

基于人工智能的蛋白质表面比较算法
目前许多蛋白质分析方法依赖于一级序列或整体三级结构(蛋白质主链的Cα原子)的相似性检测。这些共同的序列或结构可能意味着相似的功能特征或活性特性。活性位点和配体结合位点通常位于蛋白质表面或其附近;所以相似形状的表面区域可能意味着相似的功能。我们研究了描述蛋白质表面形状特性的各种方法,并对它们进行了比较。我们目前的工作使用计算机视觉算法来描述蛋白质表面,并使用图论方法来比较表面区域。早期结果表明,我们可以成功匹配一个相关配体结合位点家族,并找到它们相似形状的表面区域。这种表面分析方法可以扩展到帮助识别未知的表面区域,以确定可能的配体结合或活性位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信