H. Du, N. Alechina, Amin Farjudian, B. Logan, Can Zhou, A. Cohn
{"title":"A Logic of East and West","authors":"H. Du, N. Alechina, Amin Farjudian, B. Logan, Can Zhou, A. Cohn","doi":"10.1613/jair.1.14113","DOIUrl":null,"url":null,"abstract":"We propose a logic of east and west (LEW ) for points in 1D Euclidean space. It formalises primitive direction relations: east (E), west (W) and indeterminate east/west (Iew). It has a parameter τ ∈ N>1, which is referred to as the level of indeterminacy in directions. For every τ ∈ N>1, we provide a sound and complete axiomatisation of LEW , and prove that its satisfiability problem is NP-complete. In addition, we show that the finite axiomatisability of LEW depends on τ : if τ = 2 or τ = 3, then there exists a finite sound and complete axiomatisation; if τ > 3, then the logic is not finitely axiomatisable. LEW can be easily extended to higher-dimensional Euclidean spaces. Extending LEW to 2D Euclidean space makes it suitable for reasoning about not perfectly aligned representations of the same spatial objects in different datasets, for example, in crowd-sourced digital maps.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14113","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a logic of east and west (LEW ) for points in 1D Euclidean space. It formalises primitive direction relations: east (E), west (W) and indeterminate east/west (Iew). It has a parameter τ ∈ N>1, which is referred to as the level of indeterminacy in directions. For every τ ∈ N>1, we provide a sound and complete axiomatisation of LEW , and prove that its satisfiability problem is NP-complete. In addition, we show that the finite axiomatisability of LEW depends on τ : if τ = 2 or τ = 3, then there exists a finite sound and complete axiomatisation; if τ > 3, then the logic is not finitely axiomatisable. LEW can be easily extended to higher-dimensional Euclidean spaces. Extending LEW to 2D Euclidean space makes it suitable for reasoning about not perfectly aligned representations of the same spatial objects in different datasets, for example, in crowd-sourced digital maps.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.