Argon isotope and halogen chemistry of phlogopite from South African kimberlites: a combined step-heating, laser probe, electron microprobe and TEM study
{"title":"Argon isotope and halogen chemistry of phlogopite from South African kimberlites: a combined step-heating, laser probe, electron microprobe and TEM study","authors":"D. Phillips","doi":"10.1016/0168-9622(91)90043-V","DOIUrl":null,"url":null,"abstract":"<div><p>Argon isotopic analyses were undertaken on phlogopite from the Swartruggens kimberlite dyke and a Premier kimberlite (1200 Ma) peridotite xenolith. Groundmass phlogopite from Swartruggens yields a plateau age of 145.0± 0.4 Ma, consistent with previous age determinations. Phlogopite phenocrysts from Swartruggens and macrocrysts from the Premier xenolith yield complex age spectra, with anomalously old ages, attributed to incorporation of excess radiogenic argon.</p><p>Laser probe analyses on single phlogopite grains reveal systematic zonations in excess Ar and CI concentrations across (001) cleavage surfaces. One Premier macrocryst exhibits ages in excess of 2.3 Ga and CI levels of 1600 ppm at its centre. These values decrease systematically to 1.2 Ga and 1300 ppm Cl along grain margins. Similar results were obtained from a single Swartruggens phenocryst, which exhibits a range in values of 340—800 Ma and 300—1300 ppm Cl. A second Swartruggens phenocryst is characterised by smaller variations in age (140–230 Ma) and CI content (390–470 ppm ). Fluorine concentrations, determined by electron microprobe, are relatively constant or increase slightly towards grain edges. The laser probe profiles cannot be reconciled with the step-heating results, probably due to phlogopite degradation during <em>invacuo</em> furnace heating.</p><p>Transport of Ar and CI in kimberlitic phlogopite appears to be dominated by radial diffusion (cylindrical geometry). The variety of laser probe profiles obtained suggests that Ar and Cl diffusion is governed by factors such as lattice diffusion, diffusion anisotropy, and structural defects, which reduce the effective radii of diffusion and may impart a component of pipe diffusion.</p><p>It is suggested that the xenolith phlogopite entrapped excess <sup>40</sup>Ar and halogens in the mantle lithosphere, in response to elevated Ar and halogen fluid pressures. Swartruggens phenocrysts appear to have crystallised from a volatile-rich kimberlite melt. Subsequent magma devolatilisation prior to emplacement reduced Ar partial pressure and CI content. Possible reasons for enhanced F levels after devolatilisation include increased F solubility in the kimberlite melt, extraction of F from infiltrating hydrothermal fluids and local heterogeneities in fluid composition.</p><p>The final distributions of Ar, Cl and F in kimberlitic phlogopite are variably dependent on several parameters, including local fluid composition, timing of melt devolatilisation, diffusion/ exchange mechanisms, and mineral composition.</p></div>","PeriodicalId":100231,"journal":{"name":"Chemical Geology: Isotope Geoscience section","volume":"87 2","pages":"Pages 71-98"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0168-9622(91)90043-V","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology: Isotope Geoscience section","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/016896229190043V","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
Argon isotopic analyses were undertaken on phlogopite from the Swartruggens kimberlite dyke and a Premier kimberlite (1200 Ma) peridotite xenolith. Groundmass phlogopite from Swartruggens yields a plateau age of 145.0± 0.4 Ma, consistent with previous age determinations. Phlogopite phenocrysts from Swartruggens and macrocrysts from the Premier xenolith yield complex age spectra, with anomalously old ages, attributed to incorporation of excess radiogenic argon.
Laser probe analyses on single phlogopite grains reveal systematic zonations in excess Ar and CI concentrations across (001) cleavage surfaces. One Premier macrocryst exhibits ages in excess of 2.3 Ga and CI levels of 1600 ppm at its centre. These values decrease systematically to 1.2 Ga and 1300 ppm Cl along grain margins. Similar results were obtained from a single Swartruggens phenocryst, which exhibits a range in values of 340—800 Ma and 300—1300 ppm Cl. A second Swartruggens phenocryst is characterised by smaller variations in age (140–230 Ma) and CI content (390–470 ppm ). Fluorine concentrations, determined by electron microprobe, are relatively constant or increase slightly towards grain edges. The laser probe profiles cannot be reconciled with the step-heating results, probably due to phlogopite degradation during invacuo furnace heating.
Transport of Ar and CI in kimberlitic phlogopite appears to be dominated by radial diffusion (cylindrical geometry). The variety of laser probe profiles obtained suggests that Ar and Cl diffusion is governed by factors such as lattice diffusion, diffusion anisotropy, and structural defects, which reduce the effective radii of diffusion and may impart a component of pipe diffusion.
It is suggested that the xenolith phlogopite entrapped excess 40Ar and halogens in the mantle lithosphere, in response to elevated Ar and halogen fluid pressures. Swartruggens phenocrysts appear to have crystallised from a volatile-rich kimberlite melt. Subsequent magma devolatilisation prior to emplacement reduced Ar partial pressure and CI content. Possible reasons for enhanced F levels after devolatilisation include increased F solubility in the kimberlite melt, extraction of F from infiltrating hydrothermal fluids and local heterogeneities in fluid composition.
The final distributions of Ar, Cl and F in kimberlitic phlogopite are variably dependent on several parameters, including local fluid composition, timing of melt devolatilisation, diffusion/ exchange mechanisms, and mineral composition.