Shortcuts for the Circle

S. Bae, M. D. Berg, O. Cheong, Joachim Gudmundsson, C. Levcopoulos
{"title":"Shortcuts for the Circle","authors":"S. Bae, M. D. Berg, O. Cheong, Joachim Gudmundsson, C. Levcopoulos","doi":"10.4230/LIPIcs.ISAAC.2017.9","DOIUrl":null,"url":null,"abstract":"Abstract Let C be the unit circle in R 2 . We can view C as a plane graph whose vertices are all the points on C, and the distance between any two points on C is the length of the smaller arc between them. We consider a graph augmentation problem on C, where we want to place k ⩾ 1 shortcuts on C such that the diameter of the resulting graph is minimized. We analyze for each k with 1 ⩽ k ⩽ 7 what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of k. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is 2 + Θ ( 1 / k 2 3 ) for any k.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"14 1","pages":"37-54"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2017.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Let C be the unit circle in R 2 . We can view C as a plane graph whose vertices are all the points on C, and the distance between any two points on C is the length of the smaller arc between them. We consider a graph augmentation problem on C, where we want to place k ⩾ 1 shortcuts on C such that the diameter of the resulting graph is minimized. We analyze for each k with 1 ⩽ k ⩽ 7 what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of k. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is 2 + Θ ( 1 / k 2 3 ) for any k.
圆圈的快捷方式
设C为r2中的单位圆。我们可以把C看成一个平面图形,它的顶点是C上的所有点,C上任意两点之间的距离就是它们之间的小弧的长度。我们考虑C上的图形增强问题,其中我们想在C上放置k或1个捷径,以便结果图形的直径最小。我们对每一个1±k≤7的k分析最优的捷径集是什么。有趣的是,一个人能得到的最小直径并不是k的严格递减函数。例如,有7条捷径的人不能比有6条捷径的人得到更小的直径。最后,我们证明了对于任意k,最优直径为2 + Θ (1 / k23)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信