Numerical approximations for a class of nonlinear higher order singular boundary value problem by using homotopy perturbation and variational iteration method

IF 0.9 Q3 MATHEMATICS, APPLIED
Biswajit Pandit, Amit Kumar Verma, Ravi P. Agarwal
{"title":"Numerical approximations for a class of nonlinear higher order singular boundary value problem by using homotopy perturbation and variational iteration method","authors":"Biswajit Pandit,&nbsp;Amit Kumar Verma,&nbsp;Ravi P. Agarwal","doi":"10.1002/cmm4.1195","DOIUrl":null,"url":null,"abstract":"<p>In this work, we focus on the non-linear fourth order class of singular boundary value problem which contains the parameter <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math>. We convert this non-linear differential equation into third order non-linear differential equation. The third order problem is singular, non self adjoint, and nonlinear. Moreover, depending upon <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math>, it admits multiple solutions. Hence, it is too difficult to capture these solutions by any discrete method such as finite difference and so forth. Here we develop an iterative technique with the help of homotopy perturbation method and variational iteration method in a suitable way. Convergence of this series solution is studied in a novel way. We compute these solutions numerically. For small positive values of <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math>, singular BVP has two solutions while solutions can not be found for large positive values of <math>\n <mrow>\n <mi>λ</mi>\n </mrow></math>. Furthermore, we also find dual solutions for <math>\n <mrow>\n <mi>λ</mi>\n <mo>&lt;</mo>\n <mn>0</mn>\n </mrow></math>.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1195","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we focus on the non-linear fourth order class of singular boundary value problem which contains the parameter λ . We convert this non-linear differential equation into third order non-linear differential equation. The third order problem is singular, non self adjoint, and nonlinear. Moreover, depending upon λ , it admits multiple solutions. Hence, it is too difficult to capture these solutions by any discrete method such as finite difference and so forth. Here we develop an iterative technique with the help of homotopy perturbation method and variational iteration method in a suitable way. Convergence of this series solution is studied in a novel way. We compute these solutions numerically. For small positive values of λ , singular BVP has two solutions while solutions can not be found for large positive values of λ . Furthermore, we also find dual solutions for λ < 0 .

用同伦摄动和变分迭代法求解一类非线性高阶奇异边值问题
本文研究了一类包含参数λ的非线性四阶奇异边值问题。我们把这个非线性微分方程转化成三阶非线性微分方程。三阶问题是奇异的、非自伴随的、非线性的。此外,依赖于λ,它允许多个解。因此,用任何离散方法,如有限差分等,都很难得到这些解。本文以一种合适的方式,利用同伦摄动法和变分迭代法,发展了一种迭代技术。以一种新颖的方法研究了该级数解的收敛性。我们用数值方法计算这些解。对于λ的小正值,奇异BVP有两个解,而对于λ的大正值则没有解。此外,我们还找到了λ <0 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信