Bounds on Scott ranks of some polish metric spaces

IF 0.9 1区 数学 Q1 LOGIC
William Chan
{"title":"Bounds on Scott ranks of some polish metric spaces","authors":"William Chan","doi":"10.1142/s021906132150001x","DOIUrl":null,"url":null,"abstract":"If [Formula: see text] is a proper Polish metric space and [Formula: see text] is any countable dense submetric space of [Formula: see text], then the Scott rank of [Formula: see text] in the natural first-order language of metric spaces is countable and in fact at most [Formula: see text], where [Formula: see text] is the Church–Kleene ordinal of [Formula: see text] (construed as a subset of [Formula: see text]) which is the least ordinal with no presentation on [Formula: see text] computable from [Formula: see text]. If [Formula: see text] is a rigid Polish metric space and [Formula: see text] is any countable dense submetric space, then the Scott rank of [Formula: see text] is countable and in fact less than [Formula: see text].","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"108 1","pages":"2150001:1-2150001:23"},"PeriodicalIF":0.9000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021906132150001x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

Abstract

If [Formula: see text] is a proper Polish metric space and [Formula: see text] is any countable dense submetric space of [Formula: see text], then the Scott rank of [Formula: see text] in the natural first-order language of metric spaces is countable and in fact at most [Formula: see text], where [Formula: see text] is the Church–Kleene ordinal of [Formula: see text] (construed as a subset of [Formula: see text]) which is the least ordinal with no presentation on [Formula: see text] computable from [Formula: see text]. If [Formula: see text] is a rigid Polish metric space and [Formula: see text] is any countable dense submetric space, then the Scott rank of [Formula: see text] is countable and in fact less than [Formula: see text].
一些波兰度量空间的斯科特阶的边界
如果[公式:见文]是一个适当的波兰度量空间,而[公式:见文]是[公式:见文]的任何可数稠密子度量空间,那么[公式:见文]在度量空间的自然一阶语言中的Scott秩是可数的,实际上至多[公式:见文],其中[公式:见文]是[公式:见文]的Church-Kleene序数(解释为[公式:见文]的一个子集),它是没有表示的最小序数[公式:见文]:可由[公式:见文本]计算的。如果[Formula: see text]是一个严格的波兰度量空间,而[Formula: see text]是任何可数的密集子度量空间,那么[Formula: see text]的Scott秩是可数的,实际上小于[Formula: see text]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信