Uniform asymptotics for ruin probabilities of a time-dependent bidimensional renewal risk model with dependent subexponential claims

IF 1.4 2区 经济学 Q3 BUSINESS, FINANCE
Zaiming Liu, Bingzhen Geng, Xinyue Man, Xinyu Liu
{"title":"Uniform asymptotics for ruin probabilities of a time-dependent bidimensional renewal risk model with dependent subexponential claims","authors":"Zaiming Liu, Bingzhen Geng, Xinyue Man, Xinyu Liu","doi":"10.1080/17442508.2023.2165397","DOIUrl":null,"url":null,"abstract":"This paper considers a continuous-time bidimensional renewal risk model with subexponential claims. In this model, the claim size vectors and their inter-arrival times form a sequence of independent and identically distributed random vectors following some general dependence structures introduced by [T. Jiang, Y. Wang, Y. Chen and H. Xu, Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insur. Math. Econom. 64 (2015), pp. 45–53.]. We not only extend the results of [T. Jiang, Y. Wang, Y. Chen and H. Xu, Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insur. Math. Econom. 64 (2015), pp. 45–53.] under some weak conditions, but we also obtain an asymptotic estimate of the finite-time sum-ruin probability. Furthermore, when the distributions of claim sizes have nonzero lower Karamata indices, some explicit asymptotic formulas are established for the infinite-time ruin probabilities.","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"1 1","pages":"1147 - 1169"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/17442508.2023.2165397","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a continuous-time bidimensional renewal risk model with subexponential claims. In this model, the claim size vectors and their inter-arrival times form a sequence of independent and identically distributed random vectors following some general dependence structures introduced by [T. Jiang, Y. Wang, Y. Chen and H. Xu, Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insur. Math. Econom. 64 (2015), pp. 45–53.]. We not only extend the results of [T. Jiang, Y. Wang, Y. Chen and H. Xu, Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insur. Math. Econom. 64 (2015), pp. 45–53.] under some weak conditions, but we also obtain an asymptotic estimate of the finite-time sum-ruin probability. Furthermore, when the distributions of claim sizes have nonzero lower Karamata indices, some explicit asymptotic formulas are established for the infinite-time ruin probabilities.
具有从属次指数索赔的时变二维更新风险模型破产概率的一致渐近性
研究了具有次指数索赔的连续时间二维续订风险模型。在该模型中,索赔规模向量和它们的间隔到达时间形成了一系列独立的、同分布的随机向量,遵循[T。蒋艳,王勇,陈艳,徐辉,基于时间依赖的二维更新模型有限时间破产概率的一致渐近估计,保险学报。数学。经济,64 (2015),pp. 45-53。我们不仅推广了[T]的结果。蒋艳,王勇,陈艳,徐辉,基于时间依赖的二维更新模型有限时间破产概率的一致渐近估计,保险学报。数学。经济,64 (2015),pp. 45-53。]在一些弱条件下,我们也得到了有限时间和破产概率的渐近估计。进一步,当索赔规模分布具有非零下卡拉玛塔指数时,建立了关于无限时间破产概率的一些显式渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信