Anthony Kastrinakis, V. Skliros, P. Tsakiridis, M. Perraki
{"title":"CO2-Mineralised Nesquehonite: A New “Green” Building Material","authors":"Anthony Kastrinakis, V. Skliros, P. Tsakiridis, M. Perraki","doi":"10.3390/materproc2021005060","DOIUrl":null,"url":null,"abstract":"Synthetic nesquehonite with a Mg(HCO3)OH·2H2O chemical formula is a solid product of CO2 mineralization with cementitious properties. It constitutes an “MHCH” (magnesium hydroxy-carbonate hydrate) phase and, along with dypingite and hydromagnesite, is considered to be a promising permanent and safe solution for CO2 storage with potential utilization as a supplementary material in “green” building materials. In this work, synthetic nesquehonite-based mortars were evaluated in terms of their compressive strengths. Nesquehonite was synthesized by CO2 mineralization under ambient conditions (25 °C and 1 atm). A saturated Mg2+ solution was used at a pH of 9.3. The synthesized nesquehonite was subsequently studied by means of optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Impurity-free nesquehonite formed elongated fibers, often around a centerpiece, creating a rosette-like structure. The synthesized nesquehonite was mixed with reactive magnesia, natural pozzolan, standard aggregate sand and water to create a mortar. The mortar was cast into 5 × 5 × 5 silicone mold and cured in water for 28 days. A compressive strength of up to 22 MPa was achieved. An X-ray diffraction study of the cured mortars revealed the formation of brucite as the main hydration crystalline phase. Carbon dioxide mineralized nesquehonite is a very promising “green” building material with competitive properties that might prove to be an essential part of the circular economy industrial approach.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2021005060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Synthetic nesquehonite with a Mg(HCO3)OH·2H2O chemical formula is a solid product of CO2 mineralization with cementitious properties. It constitutes an “MHCH” (magnesium hydroxy-carbonate hydrate) phase and, along with dypingite and hydromagnesite, is considered to be a promising permanent and safe solution for CO2 storage with potential utilization as a supplementary material in “green” building materials. In this work, synthetic nesquehonite-based mortars were evaluated in terms of their compressive strengths. Nesquehonite was synthesized by CO2 mineralization under ambient conditions (25 °C and 1 atm). A saturated Mg2+ solution was used at a pH of 9.3. The synthesized nesquehonite was subsequently studied by means of optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Impurity-free nesquehonite formed elongated fibers, often around a centerpiece, creating a rosette-like structure. The synthesized nesquehonite was mixed with reactive magnesia, natural pozzolan, standard aggregate sand and water to create a mortar. The mortar was cast into 5 × 5 × 5 silicone mold and cured in water for 28 days. A compressive strength of up to 22 MPa was achieved. An X-ray diffraction study of the cured mortars revealed the formation of brucite as the main hydration crystalline phase. Carbon dioxide mineralized nesquehonite is a very promising “green” building material with competitive properties that might prove to be an essential part of the circular economy industrial approach.