Ruicong Zhang, Yu Bao, Qinle Weng, Zhongtian Li, YongGang Li
{"title":"Active domain adaptation method for label expansion problem","authors":"Ruicong Zhang, Yu Bao, Qinle Weng, Zhongtian Li, YongGang Li","doi":"10.1177/1748006x221140487","DOIUrl":null,"url":null,"abstract":"Over the past few years, cross-domain fault detection methods based on unsupervised domain adaptation (UDA) have gradually matured. However, existing methods usually assume that the source and target domains have the same label domain space, but ignore the problem of label expansion in the target domain. The source domain of such problems lacks transferable knowledge of newly added health categories, so the domain invariant features extracted by the UDA model only have a large correlation with the source domain health categories, but lack the key features to distinguish the newly added health categories. We found that most of the diagnostic results of this type of samples are distributed at the decision boundary of the source domain health category, and this special distribution means that the newly added health category samples have a high amount of information. Therefore, this paper considers using active learning to select samples of newly added health categories in the target domain to assist model training, and proposes an active domain adaptation intelligent fault detection framework LDE-ADA to deal with the label expansion problem. Finally, on the rotating machinery dataset, the analysis and comparison are carried out through six transfer tasks. The results show that when there is one new health category, the accuracy of LDE-ADA will increase by about 9.39% in the case of labeling three samples per round and training for 20 rounds. Experiments show that this method is an effective method to deal with the label expansion problem.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":"2007 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x221140487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past few years, cross-domain fault detection methods based on unsupervised domain adaptation (UDA) have gradually matured. However, existing methods usually assume that the source and target domains have the same label domain space, but ignore the problem of label expansion in the target domain. The source domain of such problems lacks transferable knowledge of newly added health categories, so the domain invariant features extracted by the UDA model only have a large correlation with the source domain health categories, but lack the key features to distinguish the newly added health categories. We found that most of the diagnostic results of this type of samples are distributed at the decision boundary of the source domain health category, and this special distribution means that the newly added health category samples have a high amount of information. Therefore, this paper considers using active learning to select samples of newly added health categories in the target domain to assist model training, and proposes an active domain adaptation intelligent fault detection framework LDE-ADA to deal with the label expansion problem. Finally, on the rotating machinery dataset, the analysis and comparison are carried out through six transfer tasks. The results show that when there is one new health category, the accuracy of LDE-ADA will increase by about 9.39% in the case of labeling three samples per round and training for 20 rounds. Experiments show that this method is an effective method to deal with the label expansion problem.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome