Transformer paper condition assessment using Adaptive Neuro-Fuzzy Inference System model

R. A. Prasojo, K. Diwyacitta, Suwarno, H. Gumilang
{"title":"Transformer paper condition assessment using Adaptive Neuro-Fuzzy Inference System model","authors":"R. A. Prasojo, K. Diwyacitta, Suwarno, H. Gumilang","doi":"10.1109/ICECOS.2017.8167141","DOIUrl":null,"url":null,"abstract":"This paper presents the possibility of using Adaptive Neuro Fuzzy Inference System for Power Transformer Paper Condition Assessment. The dielectric characteristics, dissolved gasses, and furan of 108 running transformers is collected. The 2-furaldehyde (2FAL) data is transformed to Degree of Polymerization (DP), and then statistically analysed to get independent variables as the predictor for the transformer paper condition assessment. CO and CO2 are well known as one of the product of cellulose degradation, while interfacial tension, acidity, and color from the oil are statistically correlated with furan. ANFIS (Adaptive Neuro-Fuzzy Inference System) and Multiple Regression (MR) model is built based on the previous statistical analysis, and then the result is evaluated and compared, resulting in better accuracy of ANFIS model. Three different evaluation criteria MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and RMSE (Root Mean Square Error) calculated from ANFIS prediction are lower than those from MR model, with the MAPE of ANFIS model is 15.38%.","PeriodicalId":6528,"journal":{"name":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"27 1","pages":"237-242"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2017.8167141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents the possibility of using Adaptive Neuro Fuzzy Inference System for Power Transformer Paper Condition Assessment. The dielectric characteristics, dissolved gasses, and furan of 108 running transformers is collected. The 2-furaldehyde (2FAL) data is transformed to Degree of Polymerization (DP), and then statistically analysed to get independent variables as the predictor for the transformer paper condition assessment. CO and CO2 are well known as one of the product of cellulose degradation, while interfacial tension, acidity, and color from the oil are statistically correlated with furan. ANFIS (Adaptive Neuro-Fuzzy Inference System) and Multiple Regression (MR) model is built based on the previous statistical analysis, and then the result is evaluated and compared, resulting in better accuracy of ANFIS model. Three different evaluation criteria MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and RMSE (Root Mean Square Error) calculated from ANFIS prediction are lower than those from MR model, with the MAPE of ANFIS model is 15.38%.
基于自适应神经模糊推理系统模型的变压器纸状态评估
提出了将自适应神经模糊推理系统应用于电力变压器纸张状态评估的可能性。收集了108台运行变压器的介电特性、溶解气体和呋喃。将2-呋喃醛(2FAL)数据转化为聚合度(DP),然后进行统计分析,得到自变量作为变压器纸状态评估的预测因子。众所周知,CO和CO2是纤维素降解的产物之一,而油的界面张力、酸度和颜色与呋喃有统计学上的相关性。在之前统计分析的基础上,建立了自适应神经模糊推理系统(ANFIS)和多元回归(MR)模型,并对结果进行了评价和比较,提高了ANFIS模型的准确性。ANFIS预测计算的3个不同评价标准MAE (Mean Absolute Error)、MAPE (Mean Absolute Percentage Error)和RMSE (Root Mean Square Error)均低于MR模型,其中ANFIS模型的MAPE为15.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信