A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator using Memory Reconfiguration in 40 nm

S. Pal, Dong-hyeon Park, Siying Feng, Paul Gao, Jielun Tan, A. Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Tim Wesley, Jonathan Beaumont, Kuan-Yu Chen, C. Chakrabarti, M. Taylor, T. Mudge, D. Blaauw, Hun-Seok Kim, R. Dreslinski
{"title":"A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator using Memory Reconfiguration in 40 nm","authors":"S. Pal, Dong-hyeon Park, Siying Feng, Paul Gao, Jielun Tan, A. Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Tim Wesley, Jonathan Beaumont, Kuan-Yu Chen, C. Chakrabarti, M. Taylor, T. Mudge, D. Blaauw, Hun-Seok Kim, R. Dreslinski","doi":"10.23919/VLSIT.2019.8776507","DOIUrl":null,"url":null,"abstract":"A Sparse Matrix-Matrix multiplication (SpMM) accelerator with 48 heterogeneous cores and a reconfigurable memory hierarchy is fabricated in 40 nm CMOS. On-chip memories are reconfigured as scratchpad or cache and interconnected with synthesizable coalescing crossbars for efficient memory access in each phase of the algorithm. The $2.0\\ \\text{mm}\\times 2.6\\ \\text{mm}$ chip exhibits $12.6\\times(8.4\\times)$ energy efficiency gain, $11.7\\times(77.6\\times)$ off-chip bandwidth efficiency gain and $17.1\\times(36.9\\times)$ compute density gain against a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law graph based sparse matrices.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"166 9 Suppl 1","pages":"C150-C151"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A Sparse Matrix-Matrix multiplication (SpMM) accelerator with 48 heterogeneous cores and a reconfigurable memory hierarchy is fabricated in 40 nm CMOS. On-chip memories are reconfigured as scratchpad or cache and interconnected with synthesizable coalescing crossbars for efficient memory access in each phase of the algorithm. The $2.0\ \text{mm}\times 2.6\ \text{mm}$ chip exhibits $12.6\times(8.4\times)$ energy efficiency gain, $11.7\times(77.6\times)$ off-chip bandwidth efficiency gain and $17.1\times(36.9\times)$ compute density gain against a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law graph based sparse matrices.
基于40 nm内存重构的7.3 M输出非零/J稀疏矩阵-矩阵乘法加速器
采用40 nm CMOS工艺,研制了具有48个异构核和可重构存储器结构的稀疏矩阵-矩阵乘法(SpMM)加速器。片上存储器被重新配置为刮擦板或缓存,并与可合成的聚结交叉条互连,以便在算法的每个阶段有效地访问存储器。$2.0\ \text{mm}\times 2.6\ \text{mm}$芯片显示出$12.6\倍(8.4\倍)$能源效率增益,$11.7\倍(77.6\倍)$片外带宽效率增益和$17.1\倍(36.9\倍)$计算密度增益,与高端CPU (GPU)相比,跨一组不同的合成和基于真实世界幂律图的稀疏矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信