Moment convergence rates in the law of logarithm for moving average process under dependence

Pub Date : 2014-01-02 DOI:10.1080/17442508.2012.748057
Xiaoyong Xiao, H. Yin
{"title":"Moment convergence rates in the law of logarithm for moving average process under dependence","authors":"Xiaoyong Xiao, H. Yin","doi":"10.1080/17442508.2012.748057","DOIUrl":null,"url":null,"abstract":"Suppose that the moving average process is based on a doubly infinite sequence of identically distributed and dependent random variables with zero mean and finite variance and that the sequence of coefficients is absolutely summable. Under suitable conditions of dependence, we show the precise rates in the law of logarithm of a kind of weighted infinite series for the first moment of the partial sums of the moving average process. This generalizes the common law of logarithm with the square root of logarithm to that with any positive power of logarithm. Moreover, we provide another law of logarithm as a supplement.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2012.748057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Suppose that the moving average process is based on a doubly infinite sequence of identically distributed and dependent random variables with zero mean and finite variance and that the sequence of coefficients is absolutely summable. Under suitable conditions of dependence, we show the precise rates in the law of logarithm of a kind of weighted infinite series for the first moment of the partial sums of the moving average process. This generalizes the common law of logarithm with the square root of logarithm to that with any positive power of logarithm. Moreover, we provide another law of logarithm as a supplement.
分享
查看原文
矩收敛率在对数律下对移动平均过程的依赖
假设移动平均过程是基于一组同分布的随机变量的双无穷序列,这些随机变量均值为零,方差有限,且系数序列是绝对可和的。在适当的依赖条件下,我们给出了一类加权无穷级数的移动平均过程的部分和的第一阶矩的对数定律的精确速率。这就把对数平方根的一般规律推广到对数任意正次幂的一般规律。此外,我们还提供了另一个对数定律作为补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信