U. Kraft, M. Nikolka, Ging-Ji Nathan Wang, Yeongin Kim, R. Pfattner, Maryam Alsufyani, Iain McCulloch, B. Murmann, Z. Bao
{"title":"Low-voltage polymer transistors on hydrophobic dielectrics and surfaces","authors":"U. Kraft, M. Nikolka, Ging-Ji Nathan Wang, Yeongin Kim, R. Pfattner, Maryam Alsufyani, Iain McCulloch, B. Murmann, Z. Bao","doi":"10.1088/2515-7639/acb7a1","DOIUrl":null,"url":null,"abstract":"A set of unique features, including large-area solution processing on flexible and stretchable substrates, make polymer semiconductors a promising material choice for a range of state-of-the-art applications in electronics, optoelectronics and sensing. Yet, an inherent weakness of polymer semiconductors remains their low dielectric constants, increasing their susceptibility toward unscreened dipoles. These dipoles are particularly prevalent at polymer-dielectric interfaces with high-k dielectrics, which are essential for the operation of devices such as low-voltage field-effect transistors. This shortcoming can be addressed by using self-assembled monolayers (SAMs) to passivate surfaces that impact charge transport. However, SAM-treatment also increases the hydrophobicity of surfaces and therefore poses a challenge for subsequent solution processing steps and complex packaging of devices. Here, we report low-voltage polymer transistors processed by spin coating of the polymer semiconductors on highly hydrophobic SAM-treated aluminum and hafnium oxide dielectrics (contact angles >100) through fine-tuning of the interfacial tension at the polymer-dielectric interface. This approach enables the processing and detailed characterization of near-amorphous (indacenodithiophene-cobenzothiadiazole) as well as semicrystalline (poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)diketopyrrolo[3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophen)) polymer semiconductors. We demonstrate polymer transistors that exhibit high on-currents and field-independent, charge carrier mobilities of 0.8 cm2 V−1s−1 at low operating voltages (<3 V).","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"46 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acb7a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A set of unique features, including large-area solution processing on flexible and stretchable substrates, make polymer semiconductors a promising material choice for a range of state-of-the-art applications in electronics, optoelectronics and sensing. Yet, an inherent weakness of polymer semiconductors remains their low dielectric constants, increasing their susceptibility toward unscreened dipoles. These dipoles are particularly prevalent at polymer-dielectric interfaces with high-k dielectrics, which are essential for the operation of devices such as low-voltage field-effect transistors. This shortcoming can be addressed by using self-assembled monolayers (SAMs) to passivate surfaces that impact charge transport. However, SAM-treatment also increases the hydrophobicity of surfaces and therefore poses a challenge for subsequent solution processing steps and complex packaging of devices. Here, we report low-voltage polymer transistors processed by spin coating of the polymer semiconductors on highly hydrophobic SAM-treated aluminum and hafnium oxide dielectrics (contact angles >100) through fine-tuning of the interfacial tension at the polymer-dielectric interface. This approach enables the processing and detailed characterization of near-amorphous (indacenodithiophene-cobenzothiadiazole) as well as semicrystalline (poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)diketopyrrolo[3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophen)) polymer semiconductors. We demonstrate polymer transistors that exhibit high on-currents and field-independent, charge carrier mobilities of 0.8 cm2 V−1s−1 at low operating voltages (<3 V).
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.