Autoencoder-Enhanced Sum-Product Networks

Aaron W. Dennis, D. Ventura
{"title":"Autoencoder-Enhanced Sum-Product Networks","authors":"Aaron W. Dennis, D. Ventura","doi":"10.1109/ICMLA.2017.00-13","DOIUrl":null,"url":null,"abstract":"Sum-product networks (SPNs) are probabilistic models that guarantee exact inference in time linear in the size of the network. We use autoencoders in concert with SPNs to model high-dimensional, high-arity random vectors (e.g., image data). Experiments show that our proposed model, the autoencoder-SPN (AESPN), which combines two SPNs and an autoencoder, produces better samples than an SPN alone. This is true whether we sample all variables, or whether a set of unknown query variables is sampled, given a set of known evidence variables.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"25 1","pages":"1041-1044"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sum-product networks (SPNs) are probabilistic models that guarantee exact inference in time linear in the size of the network. We use autoencoders in concert with SPNs to model high-dimensional, high-arity random vectors (e.g., image data). Experiments show that our proposed model, the autoencoder-SPN (AESPN), which combines two SPNs and an autoencoder, produces better samples than an SPN alone. This is true whether we sample all variables, or whether a set of unknown query variables is sampled, given a set of known evidence variables.
自编码器增强的和积网络
和积网络(spn)是一种概率模型,它保证了网络大小在时间线性上的精确推断。我们将自动编码器与spn一起用于高维,高密度随机向量(例如,图像数据)的建模。实验表明,我们提出的自编码器-SPN (AESPN)模型结合了两个SPN和一个自编码器,比单独的SPN产生更好的样本。无论我们对所有变量进行抽样,还是对给定一组已知证据变量的一组未知查询变量进行抽样,都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信