Spectral analysis for the class of integral operators arising from well-posed boundary value problems of finite beam deflection on elastic foundation: characteristic equation

S. Choi
{"title":"Spectral analysis for the class of integral operators arising from well-posed boundary value problems of finite beam deflection on elastic foundation: characteristic equation","authors":"S. Choi","doi":"10.4134/BKMS.B200041","DOIUrl":null,"url":null,"abstract":"We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence $\\Gamma$ from the set of equivalent well-posed two-point boundary conditions to $\\mathrm{gl}(4,\\mathbb{C})$. Using $\\Gamma$, we derive eigenconditions for the integral operator $\\mathcal{K}_\\mathbf{M}$ for each well-posed two-point boundary condition represented by $\\mathbf{M} \\in \\mathrm{gl}(4,8,\\mathbb{C})$. Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition $\\mathbf{M}$ on $\\mathrm{Spec}\\,\\mathcal{K}_\\mathbf{M}$, (2) they connect $\\mathrm{Spec}\\,\\mathcal{K}_\\mathbf{M}$ to $\\mathrm{Spec}\\,\\mathcal{K}_{l,\\alpha,k}$ whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real $\\lambda \\not \\in \\mathrm{Spec}\\,\\mathcal{K}_{l,\\alpha,k}$, there exists a real well-posed boundary condition $\\mathbf{M}$ such that $\\lambda \\in \\mathrm{Spec}\\,\\mathcal{K}_\\mathbf{M}$. This in particular shows that the integral operators $\\mathcal{K}_\\mathbf{M}$ arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to $\\mathcal{K}_{l,\\alpha,k}$.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/BKMS.B200041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence $\Gamma$ from the set of equivalent well-posed two-point boundary conditions to $\mathrm{gl}(4,\mathbb{C})$. Using $\Gamma$, we derive eigenconditions for the integral operator $\mathcal{K}_\mathbf{M}$ for each well-posed two-point boundary condition represented by $\mathbf{M} \in \mathrm{gl}(4,8,\mathbb{C})$. Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition $\mathbf{M}$ on $\mathrm{Spec}\,\mathcal{K}_\mathbf{M}$, (2) they connect $\mathrm{Spec}\,\mathcal{K}_\mathbf{M}$ to $\mathrm{Spec}\,\mathcal{K}_{l,\alpha,k}$ whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real $\lambda \not \in \mathrm{Spec}\,\mathcal{K}_{l,\alpha,k}$, there exists a real well-posed boundary condition $\mathbf{M}$ such that $\lambda \in \mathrm{Spec}\,\mathcal{K}_\mathbf{M}$. This in particular shows that the integral operators $\mathcal{K}_\mathbf{M}$ arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to $\mathcal{K}_{l,\alpha,k}$.
弹性基础上有限梁挠曲定常边值问题的一类积分算子的谱分析:特征方程
考虑弹性地基上有限梁在竖向荷载作用下挠度的边值问题。我们构造了一个等价的适定两点边界条件集到$\mathrm{gl}(4,\mathbb{C})$的一一对应$\Gamma$。利用$\Gamma$,我们为每个由$\mathbf{M} \in \mathrm{gl}(4,8,\mathbb{C})$表示的适定两点边界条件导出了积分算子$\mathcal{K}_\mathbf{M}$的特征条件。本征条件的特殊特征包括;(1)分离了边界条件$\mathbf{M}$对$\mathrm{Spec}\,\mathcal{K}_\mathbf{M}$的影响;(2)将结构已知的$\mathrm{Spec}\,\mathcal{K}_\mathbf{M}$与$\mathrm{Spec}\,\mathcal{K}_{l,\alpha,k}$连接起来。利用本征条件,我们证明了,对于每一个非零实数$\lambda \not \in \mathrm{Spec}\,\mathcal{K}_{l,\alpha,k}$,存在一个实的适定边界条件$\mathbf{M}$,使得$\lambda \in \mathrm{Spec}\,\mathcal{K}_\mathbf{M}$。这特别表明,由适定边界条件产生的积分算子$\mathcal{K}_\mathbf{M}$通常可能不是正的,也不是收缩的,这与$\mathcal{K}_{l,\alpha,k}$相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信