The problem of substance in chemistry — an approach by means of large deviation statistics

Markus J Loferer , Anton Amann
{"title":"The problem of substance in chemistry — an approach by means of large deviation statistics","authors":"Markus J Loferer ,&nbsp;Anton Amann","doi":"10.1016/S1463-0184(01)00008-9","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Different substances can phenomenologically be defined by use of Gibbs' phase rule. In </span>quantum mechanics, on the other hand, the notion of a substance is not clearly understood: The thermal density operator </span><em>D<sub>β</sub></em> corresponding to some Hamiltonian and some chosen inverse temperature <em>β</em> is <em>uniquely</em> defined, which implies that different isomers exhibit the same thermal density operator. Coexistence of isomers, substances or phases at some temperature, on the other hand, would need different thermal density operators, one for each isomer, substance or phase. Here we try to understand this problem for the classical van der Waals gas using large deviation statistics. We show that the gaseous and liquid phase of the van der Waals gas emerge with increasing numbers of particles. Intermediate states — neither gaseous nor liquid — exist but die out with increasing number of particles. Extension of our method to quantum mechanics is not straightforward, but looks promising.</p></div>","PeriodicalId":10766,"journal":{"name":"Crystal Engineering","volume":"4 2","pages":"Pages 101-111"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1463-0184(01)00008-9","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463018401000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Different substances can phenomenologically be defined by use of Gibbs' phase rule. In quantum mechanics, on the other hand, the notion of a substance is not clearly understood: The thermal density operator Dβ corresponding to some Hamiltonian and some chosen inverse temperature β is uniquely defined, which implies that different isomers exhibit the same thermal density operator. Coexistence of isomers, substances or phases at some temperature, on the other hand, would need different thermal density operators, one for each isomer, substance or phase. Here we try to understand this problem for the classical van der Waals gas using large deviation statistics. We show that the gaseous and liquid phase of the van der Waals gas emerge with increasing numbers of particles. Intermediate states — neither gaseous nor liquid — exist but die out with increasing number of particles. Extension of our method to quantum mechanics is not straightforward, but looks promising.

化学中的物质问题——用大偏差统计的方法
不同的物质可以用吉布斯相律在现象学上定义。另一方面,在量子力学中,物质的概念并没有被清楚地理解:对应于某些哈密顿量和某些选择的逆温度β的热密度算符Dβ是唯一定义的,这意味着不同的异构体具有相同的热密度算符。另一方面,同分异构体、物质或相在一定温度下的共存,需要不同的热密度算子,每个同分异构体、物质或相对应一个。这里我们尝试用大偏差统计来理解经典范德华气体的这个问题。我们证明了范德华气体的气相和液相随着粒子数量的增加而出现。中间状态——既不是气态也不是液态——存在,但随着粒子数量的增加而消失。将我们的方法扩展到量子力学并不简单,但看起来很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信