On the linear convergence of a Bregman proximal point algorithm

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
K. Guo, C. Zhu, K. Guo, C. Zhu
{"title":"On the linear convergence of a Bregman proximal point algorithm","authors":"K. Guo, C. Zhu, K. Guo, C. Zhu","doi":"10.23952/jnva.6.2022.2.02","DOIUrl":null,"url":null,"abstract":". In this paper, we study a Bregman proximal point algorithm (BPPA) for convex optimization problems. Though the convergence and sublinear convergence rate for BPPA are well-understand, the linear convergence rate for BPPA has yet been thoroughly studied in the literature. In this paper, we analyze the linear convergence rate of BPPA. Under the assumption that the objective function is strongly convex relative to a Legendre function, we establish the linear convergence for the function values sequence. Moreover, if the Legendre function is strongly convex and smooth, the linear convergence for the iterative sequence of BPPA is obtained.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

. In this paper, we study a Bregman proximal point algorithm (BPPA) for convex optimization problems. Though the convergence and sublinear convergence rate for BPPA are well-understand, the linear convergence rate for BPPA has yet been thoroughly studied in the literature. In this paper, we analyze the linear convergence rate of BPPA. Under the assumption that the objective function is strongly convex relative to a Legendre function, we establish the linear convergence for the function values sequence. Moreover, if the Legendre function is strongly convex and smooth, the linear convergence for the iterative sequence of BPPA is obtained.
Bregman近点算法的线性收敛性
. 本文研究了求解凸优化问题的Bregman近点算法(BPPA)。虽然对BPPA的收敛性和亚线性收敛率已经有了很好的了解,但对BPPA的线性收敛率还没有深入的文献研究。本文分析了BPPA算法的线性收敛速度。在目标函数相对于Legendre函数是强凸的假设下,我们建立了函数值序列的线性收敛性。此外,当Legendre函数是强凸光滑时,得到了BPPA迭代序列的线性收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信