Algorithm 1011

Thomas Mejstrik
{"title":"Algorithm 1011","authors":"Thomas Mejstrik","doi":"10.1145/3408891","DOIUrl":null,"url":null,"abstract":"In several papers of 2013–2016, Guglielmi and Protasov made a breakthrough in the problem of the joint spectral radius computation, developing the invariant polytope algorithm that for most matrix families finds the exact value of the joint spectral radius. This algorithm found many applications in problems of functional analysis, approximation theory, combinatorics, and so on. In this article, we propose a modification of the invariant polytope algorithm making it roughly 3 times faster (single threaded), suitable for higher dimensions, and parallelise it. The modified version works for most matrix families of dimensions up to 25, for non-negative matrices up to 3,000. In addition, we introduce a new, fast algorithm, called modified Gripenberg algorithm, for computing good lower bounds for the joint spectral radius. The corresponding examples and statistics of numerical results are provided. Several applications of our algorithms are presented. In particular, we find the exact values of the regularity exponents of Daubechies wavelets up to order 42 and the capacities of codes that avoid certain difference patterns.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"20 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In several papers of 2013–2016, Guglielmi and Protasov made a breakthrough in the problem of the joint spectral radius computation, developing the invariant polytope algorithm that for most matrix families finds the exact value of the joint spectral radius. This algorithm found many applications in problems of functional analysis, approximation theory, combinatorics, and so on. In this article, we propose a modification of the invariant polytope algorithm making it roughly 3 times faster (single threaded), suitable for higher dimensions, and parallelise it. The modified version works for most matrix families of dimensions up to 25, for non-negative matrices up to 3,000. In addition, we introduce a new, fast algorithm, called modified Gripenberg algorithm, for computing good lower bounds for the joint spectral radius. The corresponding examples and statistics of numerical results are provided. Several applications of our algorithms are presented. In particular, we find the exact values of the regularity exponents of Daubechies wavelets up to order 42 and the capacities of codes that avoid certain difference patterns.
算法1011
在2013-2016年的几篇论文中,Guglielmi和Protasov在联合谱半径计算问题上取得了突破,发展了对大多数矩阵族都能找到联合谱半径精确值的不变多边形算法。该算法在泛函分析、近似理论、组合学等问题中得到了广泛的应用。在本文中,我们提出了对不变多面体算法的修改,使其大约快3倍(单线程),适合高维,并并行化它。修改后的版本适用于维度不超过25的大多数矩阵族,以及不超过3000的非负矩阵。此外,我们还引入了一种新的快速算法,称为改进Gripenberg算法,用于计算关节谱半径的良好下界。给出了相应的算例和数值结果统计。给出了算法的几个应用。特别地,我们发现了高达42阶的多贝西小波的正则指数的精确值,以及码避免某些差异模式的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信