Extended Gini-Type Measures of Risk and Variability

Q3 Mathematics
Mohammed Berkhouch, G. Lakhnati, M. Righi
{"title":"Extended Gini-Type Measures of Risk and Variability","authors":"Mohammed Berkhouch, G. Lakhnati, M. Righi","doi":"10.2139/ssrn.3007948","DOIUrl":null,"url":null,"abstract":"ABSTRACT The aim of this paper is to introduce a risk measure, Extended Gini Shortfall (EGS), that extends the Gini-type measures of risk and variability by taking risk aversion into consideration. Our risk measure is coherent and catches variability, an important concept for risk management. The analysis is made under the Choquet integral representations framework. We expose results for analytic computation under well-known distribution functions. Furthermore, we provide a practical application.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"14 1","pages":"295 - 314"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3007948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

Abstract

ABSTRACT The aim of this paper is to introduce a risk measure, Extended Gini Shortfall (EGS), that extends the Gini-type measures of risk and variability by taking risk aversion into consideration. Our risk measure is coherent and catches variability, an important concept for risk management. The analysis is made under the Choquet integral representations framework. We expose results for analytic computation under well-known distribution functions. Furthermore, we provide a practical application.
扩展基尼型风险和变异性测量
本文的目的是引入一种风险度量,即扩展基尼缺口(EGS),它通过考虑风险厌恶来扩展基尼类型的风险和可变性度量。我们的风险度量是一致的,并且捕获了可变性,这是风险管理的一个重要概念。在Choquet积分表示框架下进行了分析。我们揭示了在已知分布函数下解析计算的结果。此外,我们还提供了一个实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信