{"title":"Fusion from Multimodal Gait Spatiotemporal Data for Human Gait Speed Classifications","authors":"Abdullah S. Alharthi, K. Ozanyan","doi":"10.1109/SENSORS47087.2021.9639816","DOIUrl":null,"url":null,"abstract":"Human gait pattens remain largely undefined when relying on a single sensing modality. We report a pilot implementation of sensor fusion to classify gait spatiotemporal signals, from a publicly available dataset of 50 participants, harvested from four different type of sensors. For fusion we propose a hybrid Convolutional Neural Network and Long Short-Term Memory (hybrid CNN+LSTM) and Multi-stream CNN. The classification results are compared to single modality data using Single-stream CNN, a state-of-the-art Vision Transformer, and statistical classifiers algorithms. The fusion models outperformed the single modality methods and classified gait speed of previously unseen 10 random subjects with 97% F1-score prediction accuracy of the four gait speed classes.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"49 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Human gait pattens remain largely undefined when relying on a single sensing modality. We report a pilot implementation of sensor fusion to classify gait spatiotemporal signals, from a publicly available dataset of 50 participants, harvested from four different type of sensors. For fusion we propose a hybrid Convolutional Neural Network and Long Short-Term Memory (hybrid CNN+LSTM) and Multi-stream CNN. The classification results are compared to single modality data using Single-stream CNN, a state-of-the-art Vision Transformer, and statistical classifiers algorithms. The fusion models outperformed the single modality methods and classified gait speed of previously unseen 10 random subjects with 97% F1-score prediction accuracy of the four gait speed classes.