A novel approach in solving 0/1 Knapsack Problem using neural selection principle

K. Shyamala, P. Chanthini
{"title":"A novel approach in solving 0/1 Knapsack Problem using neural selection principle","authors":"K. Shyamala, P. Chanthini","doi":"10.1109/ICPCSI.2017.8392187","DOIUrl":null,"url":null,"abstract":"Artificial Replacements to human brain functionality will be possible only by constructing and testing virtual models for such functionalities. This work is the continuation of finding the possibilities to implement new neural biological theories into Artificial Neural Network (ANN). After implementation of problems with deterministic time complexity like XOR and N-Parity problem, this work is an implementation of “Neural Selection” under “Neural Darwinism” into a classic problem of non-deterministic polynomial time category 0/1 Knapsack Problem (KP). There have been studies about the functioning of the brain using knapsack problem. This work is the successful implementation of the exhaustive search algorithm of KP through Artificial Neural Network Model (ANNM). This implementation paves way for further modification in selection section to test heterogeneity of the model as if the human brains perform in a given situation.","PeriodicalId":6589,"journal":{"name":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","volume":"87 1","pages":"2601-2605"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCSI.2017.8392187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Artificial Replacements to human brain functionality will be possible only by constructing and testing virtual models for such functionalities. This work is the continuation of finding the possibilities to implement new neural biological theories into Artificial Neural Network (ANN). After implementation of problems with deterministic time complexity like XOR and N-Parity problem, this work is an implementation of “Neural Selection” under “Neural Darwinism” into a classic problem of non-deterministic polynomial time category 0/1 Knapsack Problem (KP). There have been studies about the functioning of the brain using knapsack problem. This work is the successful implementation of the exhaustive search algorithm of KP through Artificial Neural Network Model (ANNM). This implementation paves way for further modification in selection section to test heterogeneity of the model as if the human brains perform in a given situation.
利用神经选择原理求解0/1背包问题的新方法
人类大脑功能的人工替代品只有通过构建和测试这些功能的虚拟模型才有可能。这项工作是寻找在人工神经网络(ANN)中实现新的神经生物学理论的可能性的继续。在实现了XOR和n-奇偶性等具有确定性时间复杂度的问题之后,本工作将“神经达尔文主义”下的“神经选择”实现为非确定性多项式时间范畴0/1的经典问题。已经有关于使用背包问题的大脑功能的研究。本文通过人工神经网络模型(ANNM)成功地实现了KP的穷举搜索算法。这种实现为进一步修改选择部分铺平了道路,以测试模型的异质性,就像人类大脑在给定情况下的表现一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信