Exact stationary response of SDOF nonlinear stochastic oscillators

Rubin Wang, Kimihiko Yasuda
{"title":"Exact stationary response of SDOF nonlinear stochastic oscillators","authors":"Rubin Wang,&nbsp;Kimihiko Yasuda","doi":"10.1016/S1287-4620(00)00132-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a systematic procedure is developed to obtain the stationary probability density function for the response of a general single-degree-of-freedom (SDOF) nonlinear oscillators under parametric and external Gaussian white-noise excitations. Wang and Zhang (1998) expressed the nonlinear function of oscillators by a polynomial formula. The nonlinear system described here has the following form: <span><math><mtext>x</mtext><mtext>̈</mtext><mtext>+g(x,</mtext><mtext>x</mtext><mtext>̇</mtext><mtext>)=k</mtext><msub><mi></mi><mn>1</mn></msub><mtext>ξ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>(t)+k</mtext><msub><mi></mi><mn>2</mn></msub><mtext>xξ</mtext><msub><mi></mi><mn>2</mn></msub><mtext>(t)</mtext></math></span> , where <span><math><mtext>g(x,</mtext><mtext>x</mtext><mtext>̇</mtext><mtext>)=</mtext><mtext>∑</mtext><mtext>i=0</mtext><mtext>∞</mtext><mtext>g</mtext><msub><mi></mi><mn>i</mn></msub><mtext>(x)</mtext><mtext>x</mtext><mtext>̇</mtext><msup><mi></mi><mn>i</mn></msup></math></span> and <em>ξ</em><sub>1</sub>,<em>ξ</em><sub>2</sub> are Gaussian white noises. Thus, this paper is a generalization for the results obtained by Wang and Zhang (1998). The reduced Fokker–Planck (FP) equation is employed to get the governing equation of the probability density function. Based on this procedure, the exact stationary probability densities of many nonlinear stochastic oscillators are obtained, and it is shown that some of the exact stationary solutions described in the literature are only particular cases of the presented generalized results.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 4","pages":"Pages 349-357"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00132-0","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000001320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a systematic procedure is developed to obtain the stationary probability density function for the response of a general single-degree-of-freedom (SDOF) nonlinear oscillators under parametric and external Gaussian white-noise excitations. Wang and Zhang (1998) expressed the nonlinear function of oscillators by a polynomial formula. The nonlinear system described here has the following form: ẍ+g(x,ẋ)=k1ξ1(t)+k22(t) , where g(x,ẋ)=i=0gi(x)ẋi and ξ1,ξ2 are Gaussian white noises. Thus, this paper is a generalization for the results obtained by Wang and Zhang (1998). The reduced Fokker–Planck (FP) equation is employed to get the governing equation of the probability density function. Based on this procedure, the exact stationary probability densities of many nonlinear stochastic oscillators are obtained, and it is shown that some of the exact stationary solutions described in the literature are only particular cases of the presented generalized results.

SDOF非线性随机振荡器的精确平稳响应
本文提出了一种系统的方法来求得一般单自由度非线性振子在参数和外部高斯白噪声激励下响应的平稳概率密度函数。Wang和Zhang(1998)用多项式公式表示振子的非线性函数。这里描述的非线性系统有如下形式:+g(x,)=k1ξ1(t)+k2xξ2(t),其中g(x,)=∑i=0∞gi(x)ẋi,其中ξ1,ξ2为高斯白噪声。因此,本文是对Wang和Zhang(1998)的结果的推广。采用简化的Fokker-Planck (FP)方程得到了概率密度函数的控制方程。在此基础上,得到了许多非线性随机振子的精确平稳概率密度,并证明了文献中描述的一些精确平稳解只是所提广义结果的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信