A Communication Efficient Parallel DBSCAN Algorithm based on Parameter Server

Xu Hu, Jun Huang, Minghui Qiu
{"title":"A Communication Efficient Parallel DBSCAN Algorithm based on Parameter Server","authors":"Xu Hu, Jun Huang, Minghui Qiu","doi":"10.1145/3132847.3133112","DOIUrl":null,"url":null,"abstract":"Recent benchmark studies show that MPI-based distributed implementations of DBSCAN, e.g., PDSDBSCAN, outperform other implementations such as apache Spark etc. However, the communication cost of MPI DBSCAN increases drastically with the number of processors, which makes it inefficient for large scale problems. In this paper, we propose PS-DBSCAN, a parallel DBSCAN algorithm that combines the disjoint-set data structure and Parameter Server framework, to minimize communication cost. Since data points within the same cluster may be distributed over different workers which result in several disjoint-sets, merging them incurs large communication costs. In our algorithm, we employ a fast global union approach to union the disjoint-sets to alleviate the communication burden. Experiments over the datasets of different scales demonstrate that PS-DBSCAN outperforms the PDSDBSCAN with 2-10 times speedup on communication efficiency. We have released our PS-DBSCAN in an algorithm platform called Platform of AI (PAI) in Alibaba Cloud.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"163 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recent benchmark studies show that MPI-based distributed implementations of DBSCAN, e.g., PDSDBSCAN, outperform other implementations such as apache Spark etc. However, the communication cost of MPI DBSCAN increases drastically with the number of processors, which makes it inefficient for large scale problems. In this paper, we propose PS-DBSCAN, a parallel DBSCAN algorithm that combines the disjoint-set data structure and Parameter Server framework, to minimize communication cost. Since data points within the same cluster may be distributed over different workers which result in several disjoint-sets, merging them incurs large communication costs. In our algorithm, we employ a fast global union approach to union the disjoint-sets to alleviate the communication burden. Experiments over the datasets of different scales demonstrate that PS-DBSCAN outperforms the PDSDBSCAN with 2-10 times speedup on communication efficiency. We have released our PS-DBSCAN in an algorithm platform called Platform of AI (PAI) in Alibaba Cloud.
基于参数服务器的高效通信并行DBSCAN算法
最近的基准研究表明,基于mpi的DBSCAN的分布式实现,如PDSDBSCAN,优于其他实现,如apache Spark等。然而,MPI DBSCAN的通信成本随着处理器数量的增加而急剧增加,这使得它在处理大规模问题时效率低下。在本文中,我们提出了PS-DBSCAN算法,一种结合了不相交集数据结构和参数服务器框架的并行DBSCAN算法,以最小化通信成本。由于同一集群中的数据点可能分布在不同的工人上,从而导致多个不相交集,合并它们会产生很大的通信成本。在算法中,我们采用快速全局联合的方法对不相交集进行联合,以减轻通信负担。在不同尺度数据集上的实验表明,PS-DBSCAN在通信效率上比PDSDBSCAN提高了2-10倍。我们在阿里云的AI平台(PAI)上发布了PS-DBSCAN算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信