GaN freestanding waveguides on Si substrate for Si/GaN hybrid photonic integration

T. Sekiya, T. Sasaki, K. Hane
{"title":"GaN freestanding waveguides on Si substrate for Si/GaN hybrid photonic integration","authors":"T. Sekiya, T. Sasaki, K. Hane","doi":"10.1109/TRANSDUCERS.2015.7181361","DOIUrl":null,"url":null,"abstract":"Combination of GaN devices with Si devices is promising for the future hybrid integration in optical MEMS such as embedded light sources with electronic circuits. However, GaN optical waveguides are not directly formed on Si substrate because the refractive index of GaN is lower than that of Si. In this research, a GaN layer is grown epitaxially on a Si substrate and GaN freestanding waveguides are fabricated on the Si substrate by etching the Si substrate with XeF2. The waveguides are supported by bridge structures. Light wave propagation is simulated using finite-difference time-domain (FDTD) method. The GaN waveguides are patterned by electron beam lithography using a Cl2 plasma and the etching properties are examined. The waveguide properties such as loss are measured at blue and infrared wavelengths.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":"1 1","pages":"2057-2060"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Combination of GaN devices with Si devices is promising for the future hybrid integration in optical MEMS such as embedded light sources with electronic circuits. However, GaN optical waveguides are not directly formed on Si substrate because the refractive index of GaN is lower than that of Si. In this research, a GaN layer is grown epitaxially on a Si substrate and GaN freestanding waveguides are fabricated on the Si substrate by etching the Si substrate with XeF2. The waveguides are supported by bridge structures. Light wave propagation is simulated using finite-difference time-domain (FDTD) method. The GaN waveguides are patterned by electron beam lithography using a Cl2 plasma and the etching properties are examined. The waveguide properties such as loss are measured at blue and infrared wavelengths.
硅衬底上的GaN独立波导用于Si/GaN混合光子集成
GaN器件与Si器件的结合有望在光学MEMS中实现未来的混合集成,例如嵌入式光源与电子电路。然而,由于氮化镓的折射率比硅低,所以不能直接在硅衬底上形成氮化镓光波导。在本研究中,在Si衬底上外延生长GaN层,并通过XeF2蚀刻Si衬底在Si衬底上制备GaN独立式波导。波导由桥结构支撑。利用时域有限差分(FDTD)方法对光波的传播进行了模拟。采用电子束刻蚀技术对氮化镓波导进行了刻蚀,并对其刻蚀性能进行了研究。波导的特性,如损耗,在蓝色和红外波长测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信