STO2Vec: A Multiscale Spatio-Temporal Object Representation Method for Association Analysis

Nanyu Chen, Anran Yang, Luo Chen, W. Xiong, Ning Jing
{"title":"STO2Vec: A Multiscale Spatio-Temporal Object Representation Method for Association Analysis","authors":"Nanyu Chen, Anran Yang, Luo Chen, W. Xiong, Ning Jing","doi":"10.3390/ijgi12050207","DOIUrl":null,"url":null,"abstract":"Spatio-temporal association analysis has attracted attention in various fields, such as urban computing and crime analysis. The proliferation of positioning technology and location-based services has facilitated the expansion of association analysis across spatio-temporal scales. However, existing methods inadequately consider the scale differences among spatio-temporal objects during analysis, leading to suboptimal precision in association analysis results. To remedy this issue, we propose a multiscale spatio-temporal object representation method, STO2Vec, for association analysis. This method comprises of two parts: graph construction and embedding. For graph construction, we introduce an adaptive hierarchical discretization method to distinguish the varying scales of local features. Then, we merge the embedding method for spatio-temporal objects with that for discrete units, establishing a heterogeneous graph. For embedding, to enhance embedding quality for homogeneous and heterogeneous data, we use biased sampling and unsupervised models to capture the association strengths between spatio-temporal objects. Empirical results using real-world open-source datasets show that STO2Vec outperforms other models, improving accuracy by 16.25% on average across diverse applications. Further case studies indicate STO2Vec effectively detects association relationships between spatio-temporal objects in a range of scenarios and is applicable to tasks such as moving object behavior pattern mining and trajectory semantic annotation.","PeriodicalId":14614,"journal":{"name":"ISPRS Int. J. Geo Inf.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Int. J. Geo Inf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijgi12050207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatio-temporal association analysis has attracted attention in various fields, such as urban computing and crime analysis. The proliferation of positioning technology and location-based services has facilitated the expansion of association analysis across spatio-temporal scales. However, existing methods inadequately consider the scale differences among spatio-temporal objects during analysis, leading to suboptimal precision in association analysis results. To remedy this issue, we propose a multiscale spatio-temporal object representation method, STO2Vec, for association analysis. This method comprises of two parts: graph construction and embedding. For graph construction, we introduce an adaptive hierarchical discretization method to distinguish the varying scales of local features. Then, we merge the embedding method for spatio-temporal objects with that for discrete units, establishing a heterogeneous graph. For embedding, to enhance embedding quality for homogeneous and heterogeneous data, we use biased sampling and unsupervised models to capture the association strengths between spatio-temporal objects. Empirical results using real-world open-source datasets show that STO2Vec outperforms other models, improving accuracy by 16.25% on average across diverse applications. Further case studies indicate STO2Vec effectively detects association relationships between spatio-temporal objects in a range of scenarios and is applicable to tasks such as moving object behavior pattern mining and trajectory semantic annotation.
STO2Vec:一种面向关联分析的多尺度时空对象表示方法
时空关联分析在城市计算、犯罪分析等领域受到广泛关注。定位技术和定位服务的发展促进了关联分析在时空尺度上的扩展。然而,现有的关联分析方法在分析过程中没有充分考虑时空对象之间的尺度差异,导致关联分析结果的精度不够理想。为了解决这一问题,我们提出了一种多尺度时空对象表示方法STO2Vec进行关联分析。该方法包括图的构造和嵌入两部分。对于图的构造,我们引入了一种自适应层次离散化方法来区分局部特征的不同尺度。然后,我们将时空对象的嵌入方法与离散单元的嵌入方法合并,建立一个异构图。在嵌入方面,为了提高同质和异构数据的嵌入质量,我们使用有偏采样和无监督模型来捕获时空对象之间的关联强度。使用真实开源数据集的实证结果表明,STO2Vec优于其他模型,在不同应用中平均提高了16.25%的准确率。进一步的案例研究表明,STO2Vec可以有效地检测一系列场景中时空对象之间的关联关系,并适用于移动对象行为模式挖掘和轨迹语义注释等任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信