Modeling human gait using a Kalman filter to measure walking distance

K. Nagarajan, N. Gans, R. Jafari
{"title":"Modeling human gait using a Kalman filter to measure walking distance","authors":"K. Nagarajan, N. Gans, R. Jafari","doi":"10.1145/2077546.2077584","DOIUrl":null,"url":null,"abstract":"In this demo, we present a novel method to estimate joint angles and distance traveled by a human while walking. Understanding the kinematics of the human leg gives the velocities associated with forward human motion. Gyroscopes and accelerometers placed at two limbs provide the required measurement inputs. The inputs are used to estimate the desired state parameters associated with forward motion using a constrained Kalman Filter. Experimental results with walking subjects show that distance walked can be measured with accuracy comparable to state of the art motion tracking systems. The average RMSE is 0.05 meters per stride, which corresponds to 95% accuracy considering average stride length of 1 metre from the experiments.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"26 1","pages":"34"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2077546.2077584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this demo, we present a novel method to estimate joint angles and distance traveled by a human while walking. Understanding the kinematics of the human leg gives the velocities associated with forward human motion. Gyroscopes and accelerometers placed at two limbs provide the required measurement inputs. The inputs are used to estimate the desired state parameters associated with forward motion using a constrained Kalman Filter. Experimental results with walking subjects show that distance walked can be measured with accuracy comparable to state of the art motion tracking systems. The average RMSE is 0.05 meters per stride, which corresponds to 95% accuracy considering average stride length of 1 metre from the experiments.
用卡尔曼滤波对人体步态进行建模以测量步行距离
在这个演示中,我们提出了一种新的方法来估计人类行走时的关节角度和距离。了解了人腿的运动学,我们就知道了人向前运动的速度。安装在四肢上的陀螺仪和加速度计提供所需的测量输入。输入用于使用约束卡尔曼滤波器估计与前向运动相关的期望状态参数。以行走为实验对象的实验结果表明,行走距离的测量精度可与最先进的运动跟踪系统相媲美。平均RMSE为0.05 m /跨步,考虑实验中平均跨步长度为1 m,准确率为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信