A fast and efficient teaching-learning-based optimization algorithm for large-scale multi-objective optimization problems

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Wafa Aouadj, Rachid Seghir
{"title":"A fast and efficient teaching-learning-based optimization algorithm for large-scale multi-objective optimization problems","authors":"Wafa Aouadj, Rachid Seghir","doi":"10.1080/23799927.2023.2227147","DOIUrl":null,"url":null,"abstract":"ABSTRACT Multi-objective optimization problems with large-scale decision variables, known as LSMOPs, are characterized by their large-scale search space and multiple conflicting objectives to be optimized. They have been involved in many emergent real-world applications, such as feature and instance selection, data clustering, adversarial attack, vehicle routing problem, and others. In this work, we propose a new teaching-learning-based optimization algorithm to effectively tackle large-scale multi-objective optimization problems. The proposed approach ensures both the diversity of solutions, requested for high dimensionality of LSMOPs, and the balance between the exploitation and exploration during the optimization process. The experimental studies conducted on 54 instances of a large-scale multi-objective optimization problems test suite and the comparisons against well-known and state-of-the-art algorithms have shown the superiority of the proposed algorithm in terms of Pareto front approximation and computation time by using limited evaluation budget.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2023.2227147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Multi-objective optimization problems with large-scale decision variables, known as LSMOPs, are characterized by their large-scale search space and multiple conflicting objectives to be optimized. They have been involved in many emergent real-world applications, such as feature and instance selection, data clustering, adversarial attack, vehicle routing problem, and others. In this work, we propose a new teaching-learning-based optimization algorithm to effectively tackle large-scale multi-objective optimization problems. The proposed approach ensures both the diversity of solutions, requested for high dimensionality of LSMOPs, and the balance between the exploitation and exploration during the optimization process. The experimental studies conducted on 54 instances of a large-scale multi-objective optimization problems test suite and the comparisons against well-known and state-of-the-art algorithms have shown the superiority of the proposed algorithm in terms of Pareto front approximation and computation time by using limited evaluation budget.
一种快速高效的基于教-学的大规模多目标优化问题优化算法
具有大规模决策变量的多目标优化问题(LSMOPs)具有搜索空间大、需要优化的目标相互冲突等特点。他们已经参与了许多紧急的现实世界应用,如特征和实例选择、数据聚类、对抗性攻击、车辆路由问题等。在这项工作中,我们提出了一种新的基于教学的优化算法,以有效地解决大规模的多目标优化问题。该方法在优化过程中既保证了求解方法的多样性(满足LSMOPs的高维要求),又保证了开发与勘探之间的平衡。通过54例大规模多目标优化问题测试集的实验研究,并与国内外知名算法进行比较,结果表明,在有限的评估预算下,本文提出的算法在Pareto front逼近和计算时间方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信