{"title":"ARCTIC: metadata extraction from scientific papers in pdf using two-layer CRF","authors":"Alan Souza, V. Moreira, C. Heuser","doi":"10.1145/2644866.2644872","DOIUrl":null,"url":null,"abstract":"Most scientific articles are available in PDF format. The PDF standard allows the generation of metadata that is included within the document. However, many authors do not define this information, making this feature unreliable or incomplete. This fact has been motivating research which aims to extract metadata automatically. Automatic metadata extraction has been identified as one of the most challenging tasks in document engineering. This work proposes Artic, a method for metadata extraction from scientific papers which employs a two-layer probabilistic framework based on Conditional Random Fields. The first layer aims at identifying the main sections with metadata information, and the second layer finds, for each section, the corresponding metadata. Given a PDF file containing a scientific paper, Artic extracts the title, author names, emails, affiliations, and venue information. We report on experiments using 100 real papers from a variety of publishers. Our results outperformed the state-of-the-art system used as the baseline, achieving a precision of over 99%.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"90 1","pages":"121-130"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Most scientific articles are available in PDF format. The PDF standard allows the generation of metadata that is included within the document. However, many authors do not define this information, making this feature unreliable or incomplete. This fact has been motivating research which aims to extract metadata automatically. Automatic metadata extraction has been identified as one of the most challenging tasks in document engineering. This work proposes Artic, a method for metadata extraction from scientific papers which employs a two-layer probabilistic framework based on Conditional Random Fields. The first layer aims at identifying the main sections with metadata information, and the second layer finds, for each section, the corresponding metadata. Given a PDF file containing a scientific paper, Artic extracts the title, author names, emails, affiliations, and venue information. We report on experiments using 100 real papers from a variety of publishers. Our results outperformed the state-of-the-art system used as the baseline, achieving a precision of over 99%.