Markoff-Rosenberger triples with Fibonacci components

Pub Date : 2020-06-12 DOI:10.3336/gm.55.1.03
Szabolcs Tengelys
{"title":"Markoff-Rosenberger triples with Fibonacci components","authors":"Szabolcs Tengelys","doi":"10.3336/gm.55.1.03","DOIUrl":null,"url":null,"abstract":". We characterize the solutions of the Markoff-Rosenberger equation ax 2 + by 2 + cz 2 = dxyz with a,b,c,d ∈ Z , gcd( a,b ) = gcd( a,c ) = gcd( b,c ) = 1 and a,b,c | d , for which ( x,y,z ) = ( F i ,F j ,F k ) , where F n denotes the n -th Fibonacci number for any integer n ≥ 0 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

. We characterize the solutions of the Markoff-Rosenberger equation ax 2 + by 2 + cz 2 = dxyz with a,b,c,d ∈ Z , gcd( a,b ) = gcd( a,c ) = gcd( b,c ) = 1 and a,b,c | d , for which ( x,y,z ) = ( F i ,F j ,F k ) , where F n denotes the n -th Fibonacci number for any integer n ≥ 0 .
分享
查看原文
具有斐波那契分量的马尔科夫-罗森伯格三元组
。刻画了Markoff-Rosenberger方程ax 2 + × 2 + cz2 = dxyz的解,条件是a,b,c,d∈Z, gcd(a,b) = gcd(a,c) = gcd(a,c) = 1和a,b,c | d,其中(x,y, Z) = (Fi,F j,F k),其中F n表示任意整数n≥0时的第n个斐波那契数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信