{"title":"Markoff-Rosenberger triples with Fibonacci components","authors":"Szabolcs Tengelys","doi":"10.3336/gm.55.1.03","DOIUrl":null,"url":null,"abstract":". We characterize the solutions of the Markoff-Rosenberger equation ax 2 + by 2 + cz 2 = dxyz with a,b,c,d ∈ Z , gcd( a,b ) = gcd( a,c ) = gcd( b,c ) = 1 and a,b,c | d , for which ( x,y,z ) = ( F i ,F j ,F k ) , where F n denotes the n -th Fibonacci number for any integer n ≥ 0 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
. We characterize the solutions of the Markoff-Rosenberger equation ax 2 + by 2 + cz 2 = dxyz with a,b,c,d ∈ Z , gcd( a,b ) = gcd( a,c ) = gcd( b,c ) = 1 and a,b,c | d , for which ( x,y,z ) = ( F i ,F j ,F k ) , where F n denotes the n -th Fibonacci number for any integer n ≥ 0 .