Minimum density of triangulated packing’s three different size circles

Q3 Earth and Planetary Sciences
K. Dosmagulova, E. K. Ashimov, Z. Zhunussova, H. Noori
{"title":"Minimum density of triangulated packing’s three different size circles","authors":"K. Dosmagulova, E. K. Ashimov, Z. Zhunussova, H. Noori","doi":"10.47533/2020.1606-146x.222","DOIUrl":null,"url":null,"abstract":"The results of a study to determine the minimum and maximum packing density of disks are presented. The minimum and maximum packing densities of disks of three different sizes on a torus are determined. The minimum density is obtained from the ratio of the sectors of the circle to all parts of the triangle on the torus. Heron’s formula is used to find the minimum and maximum density of triangular packing. A diagram of a triangle formed by combining the centers of three circles of three mutually tangent circles and the minimum triangular packing density is given.","PeriodicalId":45691,"journal":{"name":"News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47533/2020.1606-146x.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The results of a study to determine the minimum and maximum packing density of disks are presented. The minimum and maximum packing densities of disks of three different sizes on a torus are determined. The minimum density is obtained from the ratio of the sectors of the circle to all parts of the triangle on the torus. Heron’s formula is used to find the minimum and maximum density of triangular packing. A diagram of a triangle formed by combining the centers of three circles of three mutually tangent circles and the minimum triangular packing density is given.
三角形填料的三个不同尺寸圆的最小密度
给出了确定磁盘最小和最大包装密度的研究结果。确定了环面上三种不同尺寸的圆盘的最小和最大填充密度。最小密度是由圆的扇形与环面上三角形所有部分的比率得到的。Heron公式用于求三角形布局的最小和最大密度。给出了由三个互相相切的圆的三个圆心和最小三角形填充密度组合而成的三角形图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
83
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信