Daanish Ali Khan, Saquib Razak, B. Raj, Rita Singh
{"title":"Human Behaviour Recognition Using Wifi Channel State Information","authors":"Daanish Ali Khan, Saquib Razak, B. Raj, Rita Singh","doi":"10.1109/ICASSP.2019.8682821","DOIUrl":null,"url":null,"abstract":"Device-Free Human Behaviour Recognition is automatically recognizing physical activity from a series of observations, without directly attaching sensors to the subject. Behaviour Recognition has applications in security, health-care, and smart homes. The ubiquity of WiFi devices has generated recent interest in Channel State Information (CSI) that describes the propagation of RF signals for behaviour recognition, leveraging the relationship between body movement and variations in CSI streams. Existing work on CSI based behaviour recognition has established the efficacy of deep neural network classifiers, yielding performance that surpasses traditional techniques. In this paper, we propose a deep Recurrent Neural Network (RNN) model for CSI based Behaviour Recognition that utilizes a Convolutional Neural Network (CNN) feature extractor with stacked Long Short-Term Memory (LSTM) networks for sequence classification. We also examine CSI de-noising techniques that allow faster training and model convergence. Our model has yielded significant improvement in classification accuracy, compared to existing techniques.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"91 1","pages":"7625-7629"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Device-Free Human Behaviour Recognition is automatically recognizing physical activity from a series of observations, without directly attaching sensors to the subject. Behaviour Recognition has applications in security, health-care, and smart homes. The ubiquity of WiFi devices has generated recent interest in Channel State Information (CSI) that describes the propagation of RF signals for behaviour recognition, leveraging the relationship between body movement and variations in CSI streams. Existing work on CSI based behaviour recognition has established the efficacy of deep neural network classifiers, yielding performance that surpasses traditional techniques. In this paper, we propose a deep Recurrent Neural Network (RNN) model for CSI based Behaviour Recognition that utilizes a Convolutional Neural Network (CNN) feature extractor with stacked Long Short-Term Memory (LSTM) networks for sequence classification. We also examine CSI de-noising techniques that allow faster training and model convergence. Our model has yielded significant improvement in classification accuracy, compared to existing techniques.