{"title":"Modeling and control of islanded DC microgrid fed by intermittent generating resources","authors":"Anupam Kumar, Arun Rathore, S. Singh, A. H. Bhat","doi":"10.1177/0309524X231154841","DOIUrl":null,"url":null,"abstract":"In this paper an islanded microgrid fed through the wind and solar energy resources is presented. The power flow within the microgrid is controlled using a Neutral Point Clamped Dual Active Bridge (NPC-DAB) converter. In the proposed dc microgrid, the solar energy source is associated at the low voltage (LV) bus and the wind energy source is connected at the high voltage (HV) bus. A permanent magnet synchronous generator (PMSG) machine is used in wind energy conversion system. The real time solar radiation and wind speed data of Rupangarh, Rajasthan, India is used as an input for renewable energy resource. The NPC-DAB will work as a power electronics juncture for expediting the energy exchange in the islanded DC Microgrid. The proposed closed loop controller based on the capacitor voltage and load voltage will expedite a complete automatic operation of the islanded DC-microgrid considering various load changes. The system is studied without storage element as the automatic control of energy generation and load feeding is carried out by the NPC-DAB, also this makes the scheme cost effective. The optimum duty ratios for NPC-DAB operation are obtained and thus the increased load demand is met. The modeling of PMSG, NPC-DAB and wind energy system is discussed in details in this work. The proposed system is studied in MATLAB/Simulink environment and results are obtained for different load variations. All the wind control parameters, NPC-DAB waveforms, load waveforms are also plotted using MATLAB.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"23 1","pages":"688 - 705"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X231154841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper an islanded microgrid fed through the wind and solar energy resources is presented. The power flow within the microgrid is controlled using a Neutral Point Clamped Dual Active Bridge (NPC-DAB) converter. In the proposed dc microgrid, the solar energy source is associated at the low voltage (LV) bus and the wind energy source is connected at the high voltage (HV) bus. A permanent magnet synchronous generator (PMSG) machine is used in wind energy conversion system. The real time solar radiation and wind speed data of Rupangarh, Rajasthan, India is used as an input for renewable energy resource. The NPC-DAB will work as a power electronics juncture for expediting the energy exchange in the islanded DC Microgrid. The proposed closed loop controller based on the capacitor voltage and load voltage will expedite a complete automatic operation of the islanded DC-microgrid considering various load changes. The system is studied without storage element as the automatic control of energy generation and load feeding is carried out by the NPC-DAB, also this makes the scheme cost effective. The optimum duty ratios for NPC-DAB operation are obtained and thus the increased load demand is met. The modeling of PMSG, NPC-DAB and wind energy system is discussed in details in this work. The proposed system is studied in MATLAB/Simulink environment and results are obtained for different load variations. All the wind control parameters, NPC-DAB waveforms, load waveforms are also plotted using MATLAB.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.