Robust Image Denoising using Kernel Predicting Networks

Zhilin Cai, Yang Zhang, Marco Manzi, A. C. Öztireli, M. Gross, T. Aydin
{"title":"Robust Image Denoising using Kernel Predicting Networks","authors":"Zhilin Cai, Yang Zhang, Marco Manzi, A. C. Öztireli, M. Gross, T. Aydin","doi":"10.2312/EGS.20211018","DOIUrl":null,"url":null,"abstract":"We present a new method for designing high quality denoisers that are robust to varying noise characteristics of input images. Instead of taking a conventional blind denoising approach or relying on explicit noise parameter estimation networks as well as invertible camera imaging pipeline models, we propose a two-stage model that first processes an input image with a small set of specialized denoisers, and then passes the resulting intermediate denoised images to a kernel predicting network that estimates per-pixel denoising kernels. We demonstrate that our approach achieves robustness to noise parameters at a level that exceeds comparable blind denoisers, while also coming close to state-of-the-art denoising quality for camera sensor noise. CCS Concepts • Computing methodologies → Image processing;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"40 1","pages":"37-40"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGS.20211018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a new method for designing high quality denoisers that are robust to varying noise characteristics of input images. Instead of taking a conventional blind denoising approach or relying on explicit noise parameter estimation networks as well as invertible camera imaging pipeline models, we propose a two-stage model that first processes an input image with a small set of specialized denoisers, and then passes the resulting intermediate denoised images to a kernel predicting network that estimates per-pixel denoising kernels. We demonstrate that our approach achieves robustness to noise parameters at a level that exceeds comparable blind denoisers, while also coming close to state-of-the-art denoising quality for camera sensor noise. CCS Concepts • Computing methodologies → Image processing;
基于核预测网络的鲁棒图像去噪
我们提出了一种设计高质量去噪器的新方法,该方法对输入图像的不同噪声特性具有鲁棒性。我们没有采用传统的盲目去噪方法或依赖显式噪声参数估计网络以及反转相机成像管道模型,而是提出了一种两阶段模型,该模型首先用一小组专用去噪器处理输入图像,然后将得到的中间去噪图像传递给一个核预测网络,该网络估计每像素去噪核。我们证明,我们的方法在超过同类盲去噪器的水平上实现了对噪声参数的鲁棒性,同时也接近于最先进的相机传感器噪声去噪质量。•计算方法→图像处理;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信