Intelligent guidance of autonomous mobile robots based on adaptive dynamic programming

Xuejing Lan, Chengxuan Qin, Yiwen Liu, H. Ouyang, Guiyun Liu
{"title":"Intelligent guidance of autonomous mobile robots based on adaptive dynamic programming","authors":"Xuejing Lan, Chengxuan Qin, Yiwen Liu, H. Ouyang, Guiyun Liu","doi":"10.1109/YAC.2019.8787703","DOIUrl":null,"url":null,"abstract":"This paper discussed the guidance problem of autonomous mobile robots with multiple constraints: target tracking, synchronization, and obstacle avoidance. The guidance strategy is proposed according to the structure of adaptive dynamic programming to enable the online learning and optimization. An action neural network and a critic neural network are designed to estimate the guidance strategy and cost function, respectively. Then, an optimal intelligent guidance law is obtained according to the designed weight updating rules of neural networks. Finally, the validity of the intelligent guidance scheme is demonstrated with a simulation of five autonomous mobile robots tracking a dynamic target in the obstacle environment.","PeriodicalId":6669,"journal":{"name":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"26 104 1","pages":"695-699"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2019.8787703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discussed the guidance problem of autonomous mobile robots with multiple constraints: target tracking, synchronization, and obstacle avoidance. The guidance strategy is proposed according to the structure of adaptive dynamic programming to enable the online learning and optimization. An action neural network and a critic neural network are designed to estimate the guidance strategy and cost function, respectively. Then, an optimal intelligent guidance law is obtained according to the designed weight updating rules of neural networks. Finally, the validity of the intelligent guidance scheme is demonstrated with a simulation of five autonomous mobile robots tracking a dynamic target in the obstacle environment.
基于自适应动态规划的自主移动机器人智能引导
讨论了具有目标跟踪、同步和避障约束的自主移动机器人的制导问题。根据自适应动态规划的结构提出了引导策略,实现了在线学习和优化。设计了行动神经网络和批评神经网络,分别对制导策略和成本函数进行估计。然后,根据所设计的神经网络权值更新规则,得到最优智能制导律。最后,通过5台自主移动机器人在障碍物环境下跟踪动态目标的仿真,验证了该智能制导方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信