Abstract A122: Self-recognition of Alu duplex RNAs is the basis for MDA5-mediated interferonopathies

Sadeem Ahmad, X. Mu, S. Hur
{"title":"Abstract A122: Self-recognition of Alu duplex RNAs is the basis for MDA5-mediated interferonopathies","authors":"Sadeem Ahmad, X. Mu, S. Hur","doi":"10.1158/2326-6074.CRICIMTEATIAACR18-A122","DOIUrl":null,"url":null,"abstract":"Melanoma Differentiation Associated Gene-5 (MDA5) is an innate immune receptor that binds to viral double-stranded RNAs (dsRNAs) and initiates type I and III interferon signaling cascade thereby playing a key role in antiviral immune response. Recently, a number of mutations that lead to aberrant activation of MDA5 have been implicated in various autoinflammatory disorders including Aicardi-Goutieres syndrome. The mechanistic basis of this constitutive MDA5 activation, however, has remained elusive. An understanding of the subtle balance of self vs. non-self discrimination by MDA5 is important, especially in the context of recent reports demonstrating the targeted activation of MDA5 as a potential therapeutic strategy against diverse carcinoma. Our work revealed a hitherto unknown role played by the RNA-rich cellular environment in preventing aberrant MDA5 activation by imposing cooperative filament assembly on dsRNAs as a functional requirement for signal activation. We further employed a novel RNase protection-RNAseq approach to show that the disease-causing gain-of-function (GOF) mutants of MDA5 can form signaling-competent filaments on endogenous RNA populations comprising mainly Alu RNA duplexes. Strikingly, under physiologic conditions, the wild type MDA5 is not activated by Alu RNAs because of its sensitivity to structural irregularities such as bulges and mismatches commonly occurring in Alu:Alu hybrids. The GOF mutants, on the other hand, show reduced sensitivity to disruptions in duplex RNA structures as revealed by our in-depth biochemical probing. Overall, the work reveals the underlying mechanism behind MDA5-mediated inflammatory disorders. Moreover, it highlights the unique role played by Alu RNAs as an evolutionary tether on MDA5, keeping its affinity towards “self” ligands under check during the course of evolution. Citation Format: Sadeem Ahmad, Xin Mu, Sun Hur. Self-recognition of Alu duplex RNAs is the basis for MDA5-mediated interferonopathies [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A122.","PeriodicalId":18169,"journal":{"name":"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-A122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma Differentiation Associated Gene-5 (MDA5) is an innate immune receptor that binds to viral double-stranded RNAs (dsRNAs) and initiates type I and III interferon signaling cascade thereby playing a key role in antiviral immune response. Recently, a number of mutations that lead to aberrant activation of MDA5 have been implicated in various autoinflammatory disorders including Aicardi-Goutieres syndrome. The mechanistic basis of this constitutive MDA5 activation, however, has remained elusive. An understanding of the subtle balance of self vs. non-self discrimination by MDA5 is important, especially in the context of recent reports demonstrating the targeted activation of MDA5 as a potential therapeutic strategy against diverse carcinoma. Our work revealed a hitherto unknown role played by the RNA-rich cellular environment in preventing aberrant MDA5 activation by imposing cooperative filament assembly on dsRNAs as a functional requirement for signal activation. We further employed a novel RNase protection-RNAseq approach to show that the disease-causing gain-of-function (GOF) mutants of MDA5 can form signaling-competent filaments on endogenous RNA populations comprising mainly Alu RNA duplexes. Strikingly, under physiologic conditions, the wild type MDA5 is not activated by Alu RNAs because of its sensitivity to structural irregularities such as bulges and mismatches commonly occurring in Alu:Alu hybrids. The GOF mutants, on the other hand, show reduced sensitivity to disruptions in duplex RNA structures as revealed by our in-depth biochemical probing. Overall, the work reveals the underlying mechanism behind MDA5-mediated inflammatory disorders. Moreover, it highlights the unique role played by Alu RNAs as an evolutionary tether on MDA5, keeping its affinity towards “self” ligands under check during the course of evolution. Citation Format: Sadeem Ahmad, Xin Mu, Sun Hur. Self-recognition of Alu duplex RNAs is the basis for MDA5-mediated interferonopathies [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A122.
摘要:Alu双工rna的自我识别是mda5介导的干扰素病变的基础
黑色素瘤分化相关基因-5 (Melanoma Differentiation Associated Gene-5, MDA5)是一种先天免疫受体,它与病毒双链rna (dsRNAs)结合,启动I型和III型干扰素信号级联,从而在抗病毒免疫应答中发挥关键作用。最近,一些导致MDA5异常激活的突变与包括aicardii - goutieres综合征在内的各种自身炎症性疾病有关。然而,这种组成型MDA5激活的机制基础仍然难以捉摸。了解MDA5在自我与非自我歧视之间的微妙平衡是很重要的,特别是在最近的报道中,MDA5的靶向激活是一种潜在的治疗多种癌症的策略。我们的工作揭示了富含rna的细胞环境在防止MDA5异常激活中发挥的迄今未知的作用,通过在dsrna上施加合作丝组装作为信号激活的功能要求。我们进一步采用了一种新的RNase保护- rnaseq方法来证明MDA5的致病功能获得(GOF)突变体可以在主要由Alu RNA双链组成的内源性RNA群体上形成信号能力丝。引人注目的是,在生理条件下,野生型MDA5不被Alu rna激活,因为它对Alu:Alu杂交中常见的凸起和错配等结构不规则性敏感。另一方面,GOF突变体对双链RNA结构破坏的敏感性降低,这是我们深入的生化探测所揭示的。总的来说,这项工作揭示了mda5介导的炎症疾病背后的潜在机制。此外,它突出了Alu rna作为MDA5进化链的独特作用,在进化过程中保持其对“自我”配体的亲和力。引用格式:Sadeem Ahmad, Xin Mu, Sun Hur。Alu双工rna的自我识别是mda5介导的干扰素病变的基础[摘要]。第四届CRI-CIMT-EATI-AACR国际癌症免疫治疗会议:将科学转化为生存;2018年9月30日至10月3日;纽约,纽约。费城(PA): AACR;癌症免疫学杂志,2019;7(2增刊):摘要nr A122。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信