Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction-Diffusion Model

Zhan-Ping Ma, Zhibo Cheng, Wei Liang
{"title":"Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction-Diffusion Model","authors":"Zhan-Ping Ma, Zhibo Cheng, Wei Liang","doi":"10.1142/S0218127423500876","DOIUrl":null,"url":null,"abstract":"In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay [Formula: see text] as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when [Formula: see text] is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter [Formula: see text] is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter [Formula: see text] when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when [Formula: see text] is larger than 1 but not sufficiently close to 1.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127423500876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay [Formula: see text] as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when [Formula: see text] is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter [Formula: see text] is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter [Formula: see text] when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when [Formula: see text] is larger than 1 but not sufficiently close to 1.
寄主-通才寄生蜂反应-扩散模型的时空格局
本文研究了一类具有齐次Dirichlet边界条件的延迟寄主-泛型寄生蜂扩散模型,在该模型中,引入泛型寄生蜂来控制寄主的入侵。利用隐函数定理构造了正稳态解的显式表达式,并证明了其线性稳定性。并以反馈时滞[公式:见文]为分岔参数,证明了当[公式:见文]随一系列临界值变化时,在正稳态解附近的空间非齐次Hopf分岔。这一发现表明反馈时间延迟可以诱导空间非均匀的周期振荡模式。当参数[公式:见文]足够大时,空间非齐次Hopf分岔的方向是正向的。我们给出了数值模拟和解来进一步说明我们的主要理论结果。数值模拟结果表明,非均匀周期解的周期和幅值随反馈时滞的增大而增大。我们的理论分析结果仅在参数[公式:见文]足够接近1时成立,而数值模拟表明,当[公式:见文]大于1但不足够接近1时,仍会出现空间非齐次Hopf分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信