Gauge-invariant formulation of time-dependent configuration interaction singles method

Takeshi Sato, T. Teramura, K. Ishikawa
{"title":"Gauge-invariant formulation of time-dependent configuration interaction singles method","authors":"Takeshi Sato, T. Teramura, K. Ishikawa","doi":"10.3390/app8030433","DOIUrl":null,"url":null,"abstract":"We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS) method [Phys. Rev. A 74, 043420 (2006)], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs) in the velocity gauge using gauge-transformed orbitals, not fixed orbitals, that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g, a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, relevant e.g, in simulating high-harmonic generation.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"45 1","pages":"433"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app8030433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS) method [Phys. Rev. A 74, 043420 (2006)], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs) in the velocity gauge using gauge-transformed orbitals, not fixed orbitals, that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g, a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, relevant e.g, in simulating high-harmonic generation.
时变组态相互作用单方法的规范不变公式
我们提出了一种基于信道轨道的时变构型相互作用单(TDCIS)方法的量规不变公式[物理学]。[j] .电子动力学研究[j] .电子工程学报,1999,14(1):1 - 2。在这个公式中,我们推导了速度计中的运动方程(EOMs),它是用量规变换的轨道,而不是固定轨道,它等价于长度计中使用固定轨道的常规运动方程。新的速度计EOMs避免了使用长度计偶极子算子,因为长度计偶极子算子在大距离上发散,并且允许利用速度计处理比长度计处理的计算优势,例如,在强波长和长波长激光的模拟中更快收敛,以及外部复杂缩放作为吸收边界的可行性。将改进的TDCIS方法应用于强激光场中一维氦原子的精确可解模型,数值证明了该方法的规范不变性。我们还讨论了计算可观测值时间导数的一致性方法,例如模拟高谐波产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信