Sliding mode control of yaw movement based on Ackermann's formula

Dilip Kumar Malav, Rajashree Taparia
{"title":"Sliding mode control of yaw movement based on Ackermann's formula","authors":"Dilip Kumar Malav, Rajashree Taparia","doi":"10.1109/COMPTELIX.2017.8004045","DOIUrl":null,"url":null,"abstract":"A ship in open sea is a very complex dynamic system. It is affected by three types of perturbations: hydrodynamic perturbations induced by the ship movements, external perturbations produced by wind, waves, and sea currents, and those produced by the control systems of the ship, like propulsion and steering systems. The external perturbations, especially the waves, are the most important, because of their high energy, which can not be completely eliminated by the control systems. The sliding mode control provides the control which is robust to perturbation. The discontinuity plane for sliding mode control is designed in an explicit form using Ackermann's formula. The control of the system is being independent of perturbations applied.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"71 1","pages":"628-632"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A ship in open sea is a very complex dynamic system. It is affected by three types of perturbations: hydrodynamic perturbations induced by the ship movements, external perturbations produced by wind, waves, and sea currents, and those produced by the control systems of the ship, like propulsion and steering systems. The external perturbations, especially the waves, are the most important, because of their high energy, which can not be completely eliminated by the control systems. The sliding mode control provides the control which is robust to perturbation. The discontinuity plane for sliding mode control is designed in an explicit form using Ackermann's formula. The control of the system is being independent of perturbations applied.
基于Ackermann公式的偏航运动滑模控制
远洋船舶是一个非常复杂的动力系统。它受到三种扰动的影响:由船舶运动引起的流体动力扰动,由风、波浪和海流产生的外部扰动,以及由船舶控制系统(如推进和转向系统)产生的扰动。外部扰动,特别是波动,是最重要的,因为它们的高能量,不能被控制系统完全消除。滑模控制提供了对摄动具有鲁棒性的控制。利用Ackermann公式,以显式形式设计了滑模控制的不连续平面。系统的控制与所施加的扰动无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信