Feature matching for 3D AR: Review from handcrafted methods to deep learning

Houssam Halmaoui, A. Haqiq
{"title":"Feature matching for 3D AR: Review from handcrafted methods to deep learning","authors":"Houssam Halmaoui, A. Haqiq","doi":"10.3233/his-220001","DOIUrl":null,"url":null,"abstract":"3D augmented reality (AR) has a photometric aspect of 3D rendering and a geometric aspect of camera tracking. In this paper, we will discuss the second aspect, which involves feature matching for stable 3D object insertion. We present the different types of image matching approaches, starting from handcrafted feature algorithms and machine learning methods, to recent deep learning approaches using various types of CNN architectures, and more modern end-to-end models. A comparison of these methods is performed according to criteria of real time and accuracy, to allow the choice of the most relevant methods for a 3D AR system.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"21 1","pages":"143-162"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-220001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D augmented reality (AR) has a photometric aspect of 3D rendering and a geometric aspect of camera tracking. In this paper, we will discuss the second aspect, which involves feature matching for stable 3D object insertion. We present the different types of image matching approaches, starting from handcrafted feature algorithms and machine learning methods, to recent deep learning approaches using various types of CNN architectures, and more modern end-to-end models. A comparison of these methods is performed according to criteria of real time and accuracy, to allow the choice of the most relevant methods for a 3D AR system.
3D AR的特征匹配:从手工方法到深度学习的回顾
三维增强现实(AR)具有三维渲染的光度方面和相机跟踪的几何方面。在本文中,我们将讨论第二个方面,即稳定的三维物体插入的特征匹配。我们提出了不同类型的图像匹配方法,从手工制作的特征算法和机器学习方法,到使用各种类型CNN架构的最新深度学习方法,以及更现代的端到端模型。根据实时性和准确性的标准对这些方法进行比较,以便为3D AR系统选择最相关的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信