{"title":"Pursuing face identity from view-specific representation to view-invariant representation","authors":"Ting Zhang, Qiulei Dong, Zhanyi Hu","doi":"10.1109/ICIP.2016.7532959","DOIUrl":null,"url":null,"abstract":"How to learn view-invariant facial representations is an important task for view-invariant face recognition. The recent work [1] discovered that the brain of the macaque monkey has a face-processing network, where some neurons are view-specific. Motivated by this discovery, this paper proposes a deep convolutional learning model for face recognition, which explicitly enforces this view-specific mechanism for learning view-invariant facial representations. The proposed model consists of two concatenated modules: the first one is a convolutional neural network (CNN) for learning the corresponding viewing pose to the input face image; the second one consists of multiple CNNs, each of which learns the corresponding frontal image of an image under a specific viewing pose. This method is of low computational cost, and it can be well trained with a relatively small number of samples. The experimental results on the MultiPIE dataset demonstrate the effectiveness of our proposed convolutional model in contrast to three state-of-the-art works.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"24 1","pages":"3244-3248"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
How to learn view-invariant facial representations is an important task for view-invariant face recognition. The recent work [1] discovered that the brain of the macaque monkey has a face-processing network, where some neurons are view-specific. Motivated by this discovery, this paper proposes a deep convolutional learning model for face recognition, which explicitly enforces this view-specific mechanism for learning view-invariant facial representations. The proposed model consists of two concatenated modules: the first one is a convolutional neural network (CNN) for learning the corresponding viewing pose to the input face image; the second one consists of multiple CNNs, each of which learns the corresponding frontal image of an image under a specific viewing pose. This method is of low computational cost, and it can be well trained with a relatively small number of samples. The experimental results on the MultiPIE dataset demonstrate the effectiveness of our proposed convolutional model in contrast to three state-of-the-art works.