Surface charge induced Dirac band splitting in a charge density wave material (TaSe4)2I

H. Yi, Zengle Huang, W. Shi, L. Min, R. Wu, C. Polley, Ruoxi Zhang, Yi-Fan Zhao, Ling Zhou, J. Adell, X. Gui, W. Xie, M. Chan, Z. Mao, Zhijun Wang, Weida Wu, Cui-Zu Chang
{"title":"Surface charge induced Dirac band splitting in a charge density wave material \n(TaSe4)2I","authors":"H. Yi, Zengle Huang, W. Shi, L. Min, R. Wu, C. Polley, Ruoxi Zhang, Yi-Fan Zhao, Ling Zhou, J. Adell, X. Gui, W. Xie, M. Chan, Z. Mao, Zhijun Wang, Weida Wu, Cui-Zu Chang","doi":"10.1103/PHYSREVRESEARCH.3.013271","DOIUrl":null,"url":null,"abstract":"(TaSe4)2I, a quasi-one-dimensional (1D) crystal, shows a characteristic temperature-driven metal-insulator phase transition. Above the charge density wave (CDW) temperature Tc, (TaSe4)2I has been predicted to harbor a Weyl semimetal phase. Below Tc, it becomes an axion insulator. Here, we perform angle-resolved photoemission spectroscopy (ARPES) measurements on the (110) surface of (TaSe4)2I and observe two sets of Dirac-like energy bands in the first Brillion zone, which agree well with our first-principles calculations. Moreover, we find that each Dirac band exhibits an energy splitting of hundreds of meV under certain circumstances. In combination with core level measurements, our theoretical analysis shows that this Dirac band splitting is a result of surface charge polarization due to the loss of surface iodine atoms. Our findings here shed new light on the interplay between band topology and CDW order in Peierls compounds and will motivate more studies on topological properties of strongly correlated quasi-1D materials.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

(TaSe4)2I, a quasi-one-dimensional (1D) crystal, shows a characteristic temperature-driven metal-insulator phase transition. Above the charge density wave (CDW) temperature Tc, (TaSe4)2I has been predicted to harbor a Weyl semimetal phase. Below Tc, it becomes an axion insulator. Here, we perform angle-resolved photoemission spectroscopy (ARPES) measurements on the (110) surface of (TaSe4)2I and observe two sets of Dirac-like energy bands in the first Brillion zone, which agree well with our first-principles calculations. Moreover, we find that each Dirac band exhibits an energy splitting of hundreds of meV under certain circumstances. In combination with core level measurements, our theoretical analysis shows that this Dirac band splitting is a result of surface charge polarization due to the loss of surface iodine atoms. Our findings here shed new light on the interplay between band topology and CDW order in Peierls compounds and will motivate more studies on topological properties of strongly correlated quasi-1D materials.
表面电荷诱导电荷密度波材料(TaSe4)2I的Dirac能带分裂
准一维(1D)晶体(TaSe4)2I表现出温度驱动的金属-绝缘体相变特征。在电荷密度波(CDW)温度Tc以上,(TaSe4)2I被预测为含有Weyl半金属相。低于Tc,它变成了一个轴子绝缘体。在此,我们对(TaSe4)2I的(110)表面进行了角分辨光电发射光谱(ARPES)测量,并在第一兆位区观察到两组狄拉克类能带,这与我们的第一性原理计算结果吻合得很好。此外,我们发现在某些情况下,每个狄拉克带都表现出数百meV的能量分裂。结合核能级测量,我们的理论分析表明,这种狄拉克带分裂是由于表面碘原子的损失而导致的表面电荷极化的结果。我们的研究结果揭示了peerls化合物中能带拓扑与CDW顺序之间的相互作用,并将激发对强相关准一维材料拓扑性质的更多研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信