Effect of Processing on Synthesis and Dielectric Behavior of Bismuth Sodium Titanate Ceramics

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
V. Pal, R. Dwivedi, O. P. Thakur
{"title":"Effect of Processing on Synthesis and Dielectric Behavior of Bismuth Sodium Titanate Ceramics","authors":"V. Pal, R. Dwivedi, O. P. Thakur","doi":"10.1155/2013/261914","DOIUrl":null,"url":null,"abstract":"An effort has been made to synthesize polycrystalline (abbreviated as BLNT) system with compositions x = 0, 0.02, and 0.04 by novel semiwet technique. Preparation of A-site oxides of BLNT for composition x = 0 was optimized using two precursor solutions such as ethylene glycol and citric acid. The XRD patterns revealed that the sample prepared by ethylene glycol precursor solution has single phase perovskite structure with a rhombohedral symmetry at RT as compared to the sample prepared by citric acid. Ethylene glycol precursor has been found to play a significant role in the crystallization, phase transitions, and electrical properties. The studies on structure, phase transitions, and dielectric properties for all the samples have been carried out over the temperature range from RT to 450°C at 100 kHz frequency. It has been observed that two phase transitions (i) ferroelectric to antiferroelectric and (ii) antiferroelectric to paraelectric occur in all the samples. All samples exhibit a modified Curie-Weiss law above Tc. A linear fitting of the modified Curie-Weiss law to the experimental data shows diffuse-type transition. The dielectric as well as ferroelectric properties of BLNT ceramics have been found to be improved with the substitution of La elements.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"85 1","pages":"1-6"},"PeriodicalIF":18.6000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/261914","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 6

Abstract

An effort has been made to synthesize polycrystalline (abbreviated as BLNT) system with compositions x = 0, 0.02, and 0.04 by novel semiwet technique. Preparation of A-site oxides of BLNT for composition x = 0 was optimized using two precursor solutions such as ethylene glycol and citric acid. The XRD patterns revealed that the sample prepared by ethylene glycol precursor solution has single phase perovskite structure with a rhombohedral symmetry at RT as compared to the sample prepared by citric acid. Ethylene glycol precursor has been found to play a significant role in the crystallization, phase transitions, and electrical properties. The studies on structure, phase transitions, and dielectric properties for all the samples have been carried out over the temperature range from RT to 450°C at 100 kHz frequency. It has been observed that two phase transitions (i) ferroelectric to antiferroelectric and (ii) antiferroelectric to paraelectric occur in all the samples. All samples exhibit a modified Curie-Weiss law above Tc. A linear fitting of the modified Curie-Weiss law to the experimental data shows diffuse-type transition. The dielectric as well as ferroelectric properties of BLNT ceramics have been found to be improved with the substitution of La elements.
工艺对钛酸铋钠陶瓷合成及介电性能的影响
采用新颖的半湿法合成了x = 0、0.02和0.04的多晶(简称BLNT)体系。采用乙二醇和柠檬酸两种前驱体溶液,优化了组成x = 0的BLNT a位氧化物的制备工艺。XRD谱图表明,与柠檬酸制得的样品相比,乙二醇前驱体溶液制得的样品在RT下具有菱形对称的单相钙钛矿结构。乙二醇前驱体在结晶、相变和电学性能方面起着重要的作用。所有样品的结构、相变和介电性能的研究都在100 kHz频率下从RT到450°C的温度范围内进行。在所有样品中都发生了两种相变(i)铁电到反铁电和(ii)反铁电到准电。所有样品均在Tc以上表现出修正的居里-魏斯定律。修正的居里-魏斯定律与实验数据的线性拟合显示出扩散型跃迁。镧元素的加入改善了BLNT陶瓷的介电性能和铁电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信