Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Andi Kurniawan Nugroho, Dinar Mutiara Kusumo Nugraheni, Terawan Agus Putranto, I Ketut Eddy Purnama, Mauridhi Hery Purnomo
{"title":"Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI","authors":"Andi Kurniawan Nugroho, Dinar Mutiara Kusumo Nugraheni, Terawan Agus Putranto, I Ketut Eddy Purnama, Mauridhi Hery Purnomo","doi":"10.24003/emitter.v10i1.694","DOIUrl":null,"url":null,"abstract":"When the blood flow to the arteries in brain is blocked, its known as Ischemic stroke or blockage stroke. Ischemic stroke can occur due to the formation of blood clots in other parts of the body. Plaque buildup in arteries, on the other hand, can cause blockages because if it ruptures, it can form blood clots. The b-1000 Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) image was used in a general examination to obtain an image of the part of the brain that had a stroke. In this study, classifications used several variations of layer convolution to obtain high accuracy and high computational consumption using b-1000 Diffusion Weighted (DW) MR in ischemic stroke types: acute, sub-acute and chronic. Ischemic stroke was classified using five variants of the Convolutional Neural Network (CNN) architectural design, i.e., CNN1–CNN5. The test results show that the CNN5 architectural design provides the best ischemic stroke classification compared to other architectural designs tested, with an accuracy of 99.861%, precision 99.862%, recall 99.861, and F1-score 99.861%.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24003/emitter.v10i1.694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

When the blood flow to the arteries in brain is blocked, its known as Ischemic stroke or blockage stroke. Ischemic stroke can occur due to the formation of blood clots in other parts of the body. Plaque buildup in arteries, on the other hand, can cause blockages because if it ruptures, it can form blood clots. The b-1000 Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) image was used in a general examination to obtain an image of the part of the brain that had a stroke. In this study, classifications used several variations of layer convolution to obtain high accuracy and high computational consumption using b-1000 Diffusion Weighted (DW) MR in ischemic stroke types: acute, sub-acute and chronic. Ischemic stroke was classified using five variants of the Convolutional Neural Network (CNN) architectural design, i.e., CNN1–CNN5. The test results show that the CNN5 architectural design provides the best ischemic stroke classification compared to other architectural designs tested, with an accuracy of 99.861%, precision 99.862%, recall 99.861, and F1-score 99.861%.
在b-1000弥散加权(DW) MRI上用卷积神经网络(CNN)方法分类缺血性脑卒中
当流向大脑动脉的血液被阻塞时,称为缺血性中风或堵塞性中风。缺血性中风是由于身体其他部位形成血块而发生的。另一方面,动脉中的斑块堆积会导致阻塞,因为如果它破裂,就会形成血栓。b-1000弥散加权(DW)磁共振成像(MRI)图像用于一般检查,以获得脑卒中部分的图像。在这项研究中,分类使用了几种不同的层卷积,使用b-1000弥散加权(DW) MR在急性、亚急性和慢性缺血性卒中类型中获得高精度和高计算消耗。使用卷积神经网络(CNN)架构设计的五个变体,即CNN1-CNN5,对缺血性卒中进行分类。测试结果表明,与其他建筑设计相比,CNN5建筑设计提供了最好的缺血性卒中分类,准确率为99.861%,精密度为99.862%,召回率为99.861,f1得分为99.861%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信