{"title":"A “semi-lazy” approach to probabilistic path prediction in dynamic environments","authors":"Jingbo Zhou, A. Tung, Wei Wu, W. Ng","doi":"10.1145/2487575.2487609","DOIUrl":null,"url":null,"abstract":"Path prediction is useful in a wide range of applications. Most of the existing solutions, however, are based on eager learning methods where models and patterns are extracted from historical trajectories and then used for future prediction. Since such approaches are committed to a set of statistically significant models or patterns, problems can arise in dynamic environments where the underlying models change quickly or where the regions are not covered with statistically significant models or patterns. We propose a \"semi-lazy\" approach to path prediction that builds prediction models on the fly using dynamically selected reference trajectories. Such an approach has several advantages. First, the target trajectories to be predicted are known before the models are built, which allows us to construct models that are deemed relevant to the target trajectories. Second, unlike the lazy learning approaches, we use sophisticated learning algorithms to derive accurate prediction models with acceptable delay based on a small number of selected reference trajectories. Finally, our approach can be continuously self-correcting since we can dynamically re-construct new models if the predicted movements do not match the actual ones. Our prediction model can construct a probabilistic path whose probability of occurrence is larger than a threshold and which is furthest ahead in term of time. Users can control the confidence of the path prediction by setting a probability threshold. We conducted a comprehensive experimental study on real-world and synthetic datasets to show the effectiveness and efficiency of our approach.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"49 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
Path prediction is useful in a wide range of applications. Most of the existing solutions, however, are based on eager learning methods where models and patterns are extracted from historical trajectories and then used for future prediction. Since such approaches are committed to a set of statistically significant models or patterns, problems can arise in dynamic environments where the underlying models change quickly or where the regions are not covered with statistically significant models or patterns. We propose a "semi-lazy" approach to path prediction that builds prediction models on the fly using dynamically selected reference trajectories. Such an approach has several advantages. First, the target trajectories to be predicted are known before the models are built, which allows us to construct models that are deemed relevant to the target trajectories. Second, unlike the lazy learning approaches, we use sophisticated learning algorithms to derive accurate prediction models with acceptable delay based on a small number of selected reference trajectories. Finally, our approach can be continuously self-correcting since we can dynamically re-construct new models if the predicted movements do not match the actual ones. Our prediction model can construct a probabilistic path whose probability of occurrence is larger than a threshold and which is furthest ahead in term of time. Users can control the confidence of the path prediction by setting a probability threshold. We conducted a comprehensive experimental study on real-world and synthetic datasets to show the effectiveness and efficiency of our approach.