Modeling and analysis of a two-stage ORC for recovering waste heat of single flash geothermal cycle

IF 0.5 4区 工程技术 Q4 ENERGY & FUELS
Yashar Aryanfar, Arash Akhsheej, Kasra Ataei Sheykh, Shaban Mousavi Ghasemlou, J. L. García Alcaraz
{"title":"Modeling and analysis of a two-stage ORC for recovering waste heat of single flash geothermal cycle","authors":"Yashar Aryanfar, Arash Akhsheej, Kasra Ataei Sheykh, Shaban Mousavi Ghasemlou, J. L. García Alcaraz","doi":"10.29047/01225383.383","DOIUrl":null,"url":null,"abstract":"Reusing heat dissipation in thermodynamic cycles is an exciting proposal to increase efficiency. In this paper, a two-stage ORC (Organic Rankine Cycle) is proposed to recover and reuse wasted energy from an SFGC (Single Flash Geothermal Cycle). The working fluids studied for the recovery system include R227ea and R116 and R124 and R125. The effect of the main elements of system performance is investigated using sensitivity analyses. Exergy degradation of various components is also calculated. For working fluids R227ea and R116, the thermal efficiency improved by 7.66%, from 0.2023 to 0.2178. The system's thermal efficiency is improved from 0.2023 to 0.2177 by 7.61% using R124 and R125. The exergy efficiency of the initial working fluid improves by 15.04%, from 0.5044 to 0.5803. Further, the second pair of working fluids from 0.5044 to 0.5852, which indicates a 16.01% system efficiency improvement. 85% of the system exergy is eliminated through the expansion valve, turbine 3, heat exchanger 2, and mixer. Including the recovery phase in the base, SFGC will positively affect the power plant's performance.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ct&f-Ciencia Tecnologia Y Futuro","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.29047/01225383.383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Reusing heat dissipation in thermodynamic cycles is an exciting proposal to increase efficiency. In this paper, a two-stage ORC (Organic Rankine Cycle) is proposed to recover and reuse wasted energy from an SFGC (Single Flash Geothermal Cycle). The working fluids studied for the recovery system include R227ea and R116 and R124 and R125. The effect of the main elements of system performance is investigated using sensitivity analyses. Exergy degradation of various components is also calculated. For working fluids R227ea and R116, the thermal efficiency improved by 7.66%, from 0.2023 to 0.2178. The system's thermal efficiency is improved from 0.2023 to 0.2177 by 7.61% using R124 and R125. The exergy efficiency of the initial working fluid improves by 15.04%, from 0.5044 to 0.5803. Further, the second pair of working fluids from 0.5044 to 0.5852, which indicates a 16.01% system efficiency improvement. 85% of the system exergy is eliminated through the expansion valve, turbine 3, heat exchanger 2, and mixer. Including the recovery phase in the base, SFGC will positively affect the power plant's performance.
单闪热循环余热回收两级ORC的建模与分析
在热力学循环中重复利用散热是提高效率的一个令人兴奋的建议。本文提出了一种两阶段的有机朗肯循环(ORC)来回收和再利用SFGC(单闪地热循环)中浪费的能量。研究的采油系统工作液包括R227ea和R116, R124和R125。利用灵敏度分析研究了系统性能主要因素的影响。还计算了各组分的火用退化。对于R227ea和R116工质,热效率提高了7.66%,从0.2023提高到0.2178。采用R124和R125,系统热效率从0.2023提高到0.2177,提高了7.61%。初始工质的火用效率从0.5044提高到0.5803,提高了15.04%。此外,第二对工作流体从0.5044提高到0.5852,表明系统效率提高了16.01%。85%的系统用能通过膨胀阀、涡轮3、热交换器2和混合器消除。包括在基地的回收阶段,SFGC将对电厂的性能产生积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ct&f-Ciencia Tecnologia Y Futuro
Ct&f-Ciencia Tecnologia Y Futuro Energy-General Energy
CiteScore
1.50
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The objective of CT&F is to publish the achievements of scientific research and technological developments of Ecopetrol S.A. and the research of other institutions in the field of oil, gas and alternative energy sources. CT&F welcomes original, novel and high-impact contributions from all the fields in the oil and gas industry like: Acquisition and Exploration technologies, Basins characterization and modeling, Petroleum geology, Reservoir modeling, Enhanced Oil Recovery Technologies, Unconventional resources, Petroleum refining, Petrochemistry, Upgrading technologies, Technologies for fuels quality, Process modeling, and optimization, Supply chain optimization, Biofuels, Renewable energies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信