APRENDIZADO DE MÁQUINA UTILIZANDO AGRUPAMENTO E REGRESSÃO NA PREVISÃO DE LOCAIS DE ACIDENTES DE TRÂNSITO EM ZONAS URBANAS

Caio Kraut
{"title":"APRENDIZADO DE MÁQUINA UTILIZANDO AGRUPAMENTO E REGRESSÃO NA PREVISÃO DE LOCAIS DE ACIDENTES DE TRÂNSITO EM ZONAS URBANAS","authors":"Caio Kraut","doi":"10.5747/ce.2022.v14.n1.e380","DOIUrl":null,"url":null,"abstract":"With the urbanization of Brazilian cities, automobile locomotion has become indispensable, so the area of urban mobility has increased on an exponential scale, resulting in an increase in traffic violence, whether caused by traffic jams, human bias or infrastructure problems. This work proposes a solution that predicts accident locations within urban areas based on temporal data (date and time) of accidents. It uses the K-Means algorithm to group and KNN Regressor to predict, within the sample of accident data from the city of São Paulo collected between 2019 and 2021, a predictive model with an accuracy of 96.04% within a tolerance of 500m was obtained.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"41 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2022.v14.n1.e380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the urbanization of Brazilian cities, automobile locomotion has become indispensable, so the area of urban mobility has increased on an exponential scale, resulting in an increase in traffic violence, whether caused by traffic jams, human bias or infrastructure problems. This work proposes a solution that predicts accident locations within urban areas based on temporal data (date and time) of accidents. It uses the K-Means algorithm to group and KNN Regressor to predict, within the sample of accident data from the city of São Paulo collected between 2019 and 2021, a predictive model with an accuracy of 96.04% within a tolerance of 500m was obtained.
利用聚类和回归预测城市交通事故地点的机器学习
随着巴西城市的城市化,汽车出行变得不可或缺,因此城市交通的面积呈指数级增长,导致交通暴力的增加,无论是由于交通堵塞,人为偏见还是基础设施问题。这项工作提出了一种基于事故的时间数据(日期和时间)预测城市区域内事故位置的解决方案。使用K-Means算法进行分组,并使用KNN回归器进行预测,在2019 - 2021年收集的圣保罗市事故数据样本中,获得了误差在500m范围内准确率为96.04%的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信