Evaluation of NoSQL graph databases for querying and versioning of engineering data in multi-disciplinary engineering environments

Richard Mordinyi, Philipp Schindler, S. Biffl
{"title":"Evaluation of NoSQL graph databases for querying and versioning of engineering data in multi-disciplinary engineering environments","authors":"Richard Mordinyi, Philipp Schindler, S. Biffl","doi":"10.1109/ETFA.2015.7301486","DOIUrl":null,"url":null,"abstract":"In the context of large engineering projects the effective and efficient exchange and versioning of information from different engineering disciplines is essential. Semantic data integration approaches provide the necessary means to overcome the gap between heterogeneous local engineering tool concepts and common project-level concepts which enable the mapping of engineering data coming from different disciplines. However, evaluations have shown that ontology-based stores do not satisfy versioning and query performance criteria in case of large multi-disciplinary engineering projects. In this paper, we present an architecture solution that uses ontologies to describe engineering models and a NoSQL graph database to version individuals. We evaluate the software architectures according to quality attributes, i.e., performance and scalability, in the context of an industrial scenarios, and compare it with related approaches. Main results suggest that the architecture outperforms ontology stores and match solutions relying on relational databases.","PeriodicalId":6862,"journal":{"name":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"77 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2015.7301486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the context of large engineering projects the effective and efficient exchange and versioning of information from different engineering disciplines is essential. Semantic data integration approaches provide the necessary means to overcome the gap between heterogeneous local engineering tool concepts and common project-level concepts which enable the mapping of engineering data coming from different disciplines. However, evaluations have shown that ontology-based stores do not satisfy versioning and query performance criteria in case of large multi-disciplinary engineering projects. In this paper, we present an architecture solution that uses ontologies to describe engineering models and a NoSQL graph database to version individuals. We evaluate the software architectures according to quality attributes, i.e., performance and scalability, in the context of an industrial scenarios, and compare it with related approaches. Main results suggest that the architecture outperforms ontology stores and match solutions relying on relational databases.
多学科工程环境中用于工程数据查询和版本控制的NoSQL图数据库的评估
在大型工程项目的背景下,来自不同工程学科的信息的有效和高效的交换和版本控制是必不可少的。语义数据集成方法为克服异构的局部工程工具概念和通用的项目级概念之间的差距提供了必要的手段,这些概念能够对来自不同学科的工程数据进行映射。然而,评估表明,在大型多学科工程项目中,基于本体的存储不能满足版本控制和查询性能标准。在本文中,我们提出了一个架构解决方案,使用本体来描述工程模型,并使用NoSQL图形数据库来版本个人。在工业场景中,我们根据质量属性(即性能和可伸缩性)评估软件架构,并将其与相关方法进行比较。主要结果表明,该体系结构优于依赖关系数据库的本体存储和匹配解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信