An 82nW 0.53pJ/SOP Clock-Free Spiking Neural Network with 40µs Latency for AloT Wake-Up Functions Using Ultimate-Event-Driven Bionic Architecture and Computing-in-Memory Technique

Ying Liu, Zhixuan Wang, W. He, Linxiao Shen, Yihan Zhang, Peiyu Chen, Meng Wu, Hao Zhang, Peng Zhou, Jinguang Liu, Guangyu Sun, Jiayoon Ru, Le Ye, Ru Huang
{"title":"An 82nW 0.53pJ/SOP Clock-Free Spiking Neural Network with 40µs Latency for AloT Wake-Up Functions Using Ultimate-Event-Driven Bionic Architecture and Computing-in-Memory Technique","authors":"Ying Liu, Zhixuan Wang, W. He, Linxiao Shen, Yihan Zhang, Peiyu Chen, Meng Wu, Hao Zhang, Peng Zhou, Jinguang Liu, Guangyu Sun, Jiayoon Ru, Le Ye, Ru Huang","doi":"10.1109/ISSCC42614.2022.9731795","DOIUrl":null,"url":null,"abstract":"Human brain is a natural ultimate-event-driven (UED) system with low power and real-time response-ability, thanks to the asynchronous propagation and processing of spikes. Power dissipation and latency are major concerns in AloT devices, usually operating in random-sparse-event (RSE) scenarios (Fig. 22.7.1, top). Being event-driven on the system level, an always-on wake-up system (WUS) detects the valid RSEs energy-efficiently and intelligently, and upon detection turns on the power-hungry high-performance system (HPS). Being event-driven on the module level, a prior WUS [1] uses asynchronous feature extraction and synchronous convolutional neural network to detect the RSEs, consuming 148nW-to-1.68µW with 348ms latency. On the circuit level, the Spiking Neural Network (SNN) gives natural event-driven property. However, the prior SNN works did not fully explore this nature. An SNN circuit [2] achieves keyword spotting task at 205nW-to-570nW, but the framing method causes 100ms latency and is not true real-time. The SNN core in [5] uses synchronous digital design, which consumes significant power by the clock tree. The asynchronous-in-global synchronous-in-local [3]–[4] SNN circuits use local clock signals. They need arbiters in each layer to sort the spikes, weakening the parallelism and timing; additionally, the separation of storage and computing consumes more energy for data movement.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"32 1","pages":"372-374"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Human brain is a natural ultimate-event-driven (UED) system with low power and real-time response-ability, thanks to the asynchronous propagation and processing of spikes. Power dissipation and latency are major concerns in AloT devices, usually operating in random-sparse-event (RSE) scenarios (Fig. 22.7.1, top). Being event-driven on the system level, an always-on wake-up system (WUS) detects the valid RSEs energy-efficiently and intelligently, and upon detection turns on the power-hungry high-performance system (HPS). Being event-driven on the module level, a prior WUS [1] uses asynchronous feature extraction and synchronous convolutional neural network to detect the RSEs, consuming 148nW-to-1.68µW with 348ms latency. On the circuit level, the Spiking Neural Network (SNN) gives natural event-driven property. However, the prior SNN works did not fully explore this nature. An SNN circuit [2] achieves keyword spotting task at 205nW-to-570nW, but the framing method causes 100ms latency and is not true real-time. The SNN core in [5] uses synchronous digital design, which consumes significant power by the clock tree. The asynchronous-in-global synchronous-in-local [3]–[4] SNN circuits use local clock signals. They need arbiters in each layer to sort the spikes, weakening the parallelism and timing; additionally, the separation of storage and computing consumes more energy for data movement.
基于终极事件驱动仿生结构和内存计算技术的82nW 0.53pJ/SOP无时钟脉冲神经网络,具有40µs延迟,可用于AloT唤醒功能
人脑是一个自然的最终事件驱动(UED)系统,具有低功耗和实时响应能力,这要归功于峰值的异步传播和处理。功耗和延迟是AloT设备的主要关注点,通常在随机稀疏事件(RSE)场景下运行(图22.7.1,顶部)。作为系统级别上的事件驱动,始终在线的唤醒系统(WUS)节能且智能地检测有效的rse,并在检测到后打开耗电的高性能系统(HPS)。先前的WUS[1]在模块级别上是事件驱动的,使用异步特征提取和同步卷积神经网络来检测rse,功耗为148nw至1.68 μ W,延迟为348ms。在电路层面,脉冲神经网络(SNN)具有自然的事件驱动特性。然而,先前的SNN工作并没有充分探索这种性质。SNN电路[2]在205nw ~ 570nw时完成关键字定位任务,但分帧方式导致100ms延迟,不是真正的实时性。[5]的SNN核心采用同步数字设计,时钟树消耗了大量的功率。异步全局同步本地[3]- [4]SNN电路使用本地时钟信号。它们需要在每一层中设置仲裁者来对尖峰进行排序,从而削弱并行性和时间;此外,存储和计算的分离会消耗更多的数据移动能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信