Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces

Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan
{"title":"Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces","authors":"Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan","doi":"10.3934/dcds.2021097","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation \\begin{align*} \\partial_{x}\\left(u_{t}-\\beta\\partial_{x}^{3}u +\\partial_{x}(u^{2})\\right)+\\partial_{y}^{2}u-\\gamma u=0 \\end{align*} in the anisotropic Sobolev spaces $H^{s_{1},\\>s_{2}}(\\mathbb{R}^{2})$. When $\\beta 0,$ we prove that the Cauchy problem is locally well-posed in $H^{s_{1},\\>s_{2}}(\\mathbb{R}^{2})$ with $s_{1}>-\\frac{1}{2}$ and $s_{2}\\geq 0$. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang( Transactions of the American Mathematical Society, 364(2012), 3395--3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in $H^{s_{1},\\>0}(\\mathbb{R}^{2})$ with $s_{1} 0,$ by using the $U^{p}$ and $V^{p}$ spaces, we prove that the Cauchy problem is locally well-posed in $H^{-\\frac{1}{2},\\>0}(\\mathbb{R}^{2})$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u=0 \end{align*} in the anisotropic Sobolev spaces $H^{s_{1},\>s_{2}}(\mathbb{R}^{2})$. When $\beta 0,$ we prove that the Cauchy problem is locally well-posed in $H^{s_{1},\>s_{2}}(\mathbb{R}^{2})$ with $s_{1}>-\frac{1}{2}$ and $s_{2}\geq 0$. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang( Transactions of the American Mathematical Society, 364(2012), 3395--3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in $H^{s_{1},\>0}(\mathbb{R}^{2})$ with $s_{1} 0,$ by using the $U^{p}$ and $V^{p}$ spaces, we prove that the Cauchy problem is locally well-posed in $H^{-\frac{1}{2},\>0}(\mathbb{R}^{2})$.
各向异性Sobolev空间中旋转修正Kadomtsev-Petviashvili方程Cauchy问题的明显适定性
考虑旋转修正Kadomtsev-Petviashvili (RMKP)方程的Cauchy问题 \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u=0 \end{align*} 在各向异性Sobolev空间中 $H^{s_{1},\>s_{2}}(\mathbb{R}^{2})$. 什么时候 $\beta 0,$ 证明了柯西问题在 $H^{s_{1},\>s_{2}}(\mathbb{R}^{2})$ 有 $s_{1}>-\frac{1}{2}$ 和 $s_{2}\geq 0$. 本文的结果较好地改进了陈仁明,刘勇,张培忠的定理1.4(数学学报,364(2012),3395—3425.)。关键思想是将频率空间划分为正则区和奇异区。进一步证明了RMKP方程的柯西问题是不适定的 $H^{s_{1},\>0}(\mathbb{R}^{2})$ 有 $s_{1} 0,$ 通过使用 $U^{p}$ 和 $V^{p}$ ,我们证明了柯西问题是局部适定的 $H^{-\frac{1}{2},\>0}(\mathbb{R}^{2})$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信